久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

九年級數(shù)學開學第一課教案

時間:2022-09-30 18:45:10 主題班會 我要投稿

九年級數(shù)學開學第一課教案(精選9篇)

  作為一名老師,就難以避免地要準備教案,借助教案可以更好地組織教學活動。優(yōu)秀的教案都具備一些什么特點呢?以下是小編收集整理的九年級數(shù)學開學第一課教案,歡迎閱讀與收藏。

九年級數(shù)學開學第一課教案(精選9篇)

  九年級數(shù)學開學第一課教案 篇1

  初三畢業(yè)班總復習教學時間緊,任務重,要求高,如何提高數(shù)學總復習的質量和效益,是每位畢業(yè)班數(shù)學教師必須面對的問題。下面就結合我校近幾年來初三數(shù)學總復習教學,談談本屆初三畢業(yè)班的復習計劃。

  一、第一輪復習

  1、第一輪復習的形式

  第一輪復習的目的是要“過三關”:

  (1)過記憶關。必須做到記牢記準所有的公式、定理等,沒有準確無誤的記憶,就不可能有好的結果。

 。2)過基本方法關。如,待定系數(shù)法求二次函數(shù)解析式。

 。3)過基本技能關。如,給你一個題,你找到了它的解題方法,也就是知道了用什么辦法,這時就說具備了解這個題的技能。基本宗旨:知識系統(tǒng)化,練習專題化,專題規(guī)律化。在這一階段的教學把書中的內(nèi)容進行歸納整理、組塊,使之形成結構,可將其分為以下幾個單元:實數(shù)、代數(shù)式、方程、不等式、函數(shù)、統(tǒng)計與概率,交線和平行線、三角形、四邊形、相似三角形、解直角三角形、圓等。復習完每個單元進行一次單元測試,重視補缺工作。

  2、第一輪復習應該注意的幾個問題

 。1)必須扎扎實實地夯實基礎。使每個學生對初中數(shù)學知識都能達到“理解”和“掌握”的要求,在應用基礎知識時能做到熟練、正確和迅速。

 。2)中考有些基礎題是課本上的原題或改造,必須深鉆教材,絕不能脫離課本。

 。3)不搞題海戰(zhàn)術,精講精練,舉一反三、觸類旁通!按缶毩暳俊笔窍鄬Χ缘模皇敲つ康拇,也不是盲目的練。而是有針對性的、典型性、層次性、切中要害的強化練習。

 。4)注意氣候。第一輪復習是冬、春兩季,大家都知道,冬春季是學習的黃金季節(jié),五月份之后,天氣酷熱,會一定程度影響學習。

 。5)定期檢查學生完成的作業(yè),及時反饋。教師對于作業(yè)、練習、測驗中的問題,應采用集中講授和個別輔導相結合,或將問題滲透在以后的教學過程中等手辦法進行反饋、矯正和強化,有利于大面積提高教學質量。

 。6)實際出發(fā),面向全體學生,因材施教,即分層次開展教學工作,全面提高復習效率。課堂復習教學實行“低起點、多歸納、快反饋”的方法。

 。7)注重思想教育,斷激發(fā)他們學好數(shù)學的自信心,并創(chuàng)造條件,讓學困生體驗成功。

 。8)應注重對尖子的培養(yǎng)。在他們解題過程中,要求他們盡量走捷徑、出奇招、有創(chuàng)意,注重邏輯關系,力求解題完整、完美,以提高中考優(yōu)秀率。對于接受能力好的同學,課外適當開展興趣小組,培養(yǎng)解題技巧,提高靈活度,使其冒“尖”。

  二、第二輪復習(五月份)

  1、第二輪復習的形式

  如果說第一階段是總復習的基礎,是重點,側重雙基訓練,那么第二階段就是第一階段復習的延伸和提高,應側重培養(yǎng)學生的數(shù)學能力。第二輪復習的時間相對集中,在一輪復習的基礎上,進行拔高,適當增加難度;第二輪復習重點突出,主要集中在熱點、難點、重點內(nèi)容上,特別是重點;注意數(shù)學思想的形成和數(shù)學方法的掌握,這就需要充分發(fā)揮教師的主導作用?蛇M行專題復習,如“方程型綜合問題”、“應用性的函數(shù)題”、“不等式應用題”、“統(tǒng)計類的應用題”、“幾何綜合問題”、“探索性應用題”、“開放題”、“閱讀理解題”、“方案設計”、“動手操作”等問題以便學生熟悉、適應這類題型。備用練習《中考紅皮書》。

  2、第二輪復習應該注意的幾個問題

  (1)第二輪復習不再以節(jié)、章、單元為單位,而是以專題為單位。

 。2)專題的劃分要合理。

 。3)專題的選擇要準、安排時間要合理。專題選的準不準,主要取決于對教學大綱(以及課程標準)和中考題的研究。專題要有代表性,切忌面面俱到;專題要由針對性,圍繞熱點、難點、重點特別是中考必考內(nèi)容選定專題;根據(jù)專題的特點安排時間,重要處要狠下功夫,不惜“浪費”時間,舍得投入精力。

  (4)注重解題后的反思。

 。5)以題代知識,由于第二輪復習的特殊性,學生在某種程度上遠離了基礎知識,會造成程度不同的知識遺忘現(xiàn)象,解決這個問題的最好辦法就是以題代知識。

 。6)專題復習的適當拔高。專題復習要有一定的難度,這是第二輪復習的特點決定的,沒有一定的難度,學生的能力是很難提高的,提高學生的能力,這是第二輪復習的任務。但要兼顧各種因素把握一個度。

  (7)專題復習的重點是揭示思維過程。不能加大學生的練習量,更不能把學生推進題海;不、能急于趕進度,在這里趕進度,是產(chǎn)生“糊涂陣”的主要原因。

 。8)注重互聯(lián)網(wǎng)的應用,資源共享。

  三、第三輪復習(六月份)

  1、第三輪復習的形式

  第三輪復習的形式是模擬中考的綜合拉練,查漏補缺,這好比是一個建筑工程的驗收階段,考前練兵。研究歷年的中考題,訓練答題技巧、考場心態(tài)、臨場發(fā)揮的能力等。

  2、第三輪復習應該注意的幾個問題

 。1)模擬題必須要有模擬的特點。時間的安排,題量的多少,低、中、高檔題的比例,總體難度的控制等要切近中考題。

 。2)模擬題的設計要有梯度,立足中考又要高于中考。

 。3)批閱要及時,趁熱打鐵,切忌連考兩份。

 。4)評分要狠。可得可不得的分不得,答案錯了的題盡量不得分,讓苛刻的評分教育學生,既然會就不要失分。

 。5)、給特殊的題加批語。某幾個題只有個別學生出錯,這樣的題不能再占用課堂上的時間,個別學生的問題,就在試卷上以批語的形式給與講解。

 。6)、詳細統(tǒng)計邊緣生的失分情況。這是課堂講評內(nèi)容的主要依據(jù)。因為,邊緣生的學習情況既有代表性,又是提高班級成績的關鍵,課堂上應該講的是邊緣生出錯較集中的題,統(tǒng)計就是關鍵的環(huán)節(jié)。

 。7)、歸納學生知識的遺漏點。為查漏補缺積累素材。

 。8)處理好講評與考試的關系。每份題一般是兩節(jié)課時間考試,兩節(jié)課時間講評,也就是說,一份題一般需要2課時的講評時間。

 。9)選準要講的題,要少、要精、要有很強的針對性。選擇的依據(jù)是邊緣生的失分情況。一般有三分之一的邊緣生出錯的題課堂上才能講。

  (10)立足一個“透”字。一個題一旦決定要講,有四個方面的工作必須做好,一是要講透;二是要展開;三是要跟上足夠量的跟蹤練習題;四要以題代知識。切忌面面俱到式講評。切忌蜻蜓點水式講評,切忌就題論題式講評。

 。11)留給學生一定的糾錯和消化時間。教師講過的內(nèi)容,學生要整理下來;教師沒講的自己解錯的題要糾錯;與之相關的基礎知識要再記憶再鞏固。教師要充分利用這段時間,解決個別學生的個別問題。

  (12)適當?shù)摹敖夥拧睂W生,特別是在時間安排上。經(jīng)過一段時間的考、考、考,幾乎所有的學生心身都會感到疲勞,如果把這種疲勞的狀態(tài)帶進中考考場,那肯定是個較差的結果。但要注意,解放不是放松,必須保證學生有個適度緊張的精神狀態(tài)。實踐證明,適度緊張是正;蛘叱0l(fā)揮的最佳狀態(tài)。

  (13)調節(jié)學生的生物鐘。盡量把學習、思考的時間調整得與中考答卷時間相吻合。

  (14)心態(tài)和信心調整。這是每位教師的責任,此時此刻信心的作用變?yōu)榱俗畲蟆?/p>

  九年級數(shù)學開學第一課教案 篇2

  九年級數(shù)學學科的教學,九年級時間非常緊張,既要完成新課程的教學又要考慮下學期對初中階段整個數(shù)學知識的全面系統(tǒng)的復習。所以在注意時間的安排上,同時把握好教學進度的基礎上特制定本學期的教學計劃:

  一、基本情況分析:

  上學年學生期末考試的成績總體來看比較好,但是優(yōu)生面不廣,尖子不尖。在學生所學知識的掌握程度上,良莠不齊,對優(yōu)生來說,能夠透徹理解知識,知識間的內(nèi)在聯(lián)系也較為清楚,對差一點的學生來說,有些基礎知識還不能有效的掌握,學生仍然缺少大量的推理題訓練,推理的思考方法與寫法上均存在著一定的困難,對幾何有畏難情緒,相關知識學得不很透徹。在學習能力上,學生課外主動獲取知識的能力較差,為減輕學生的經(jīng)濟負擔與課業(yè)負擔,不提倡學生買教輔參考書,學生自主拓展知識面,向深處學習知識的能力沒有得到很好的培養(yǎng)。在以后的教學中,培養(yǎng)學生課外主動獲取知識的能力。學生的邏輯推理、邏輯思維能力,計算能力需要得到加強,以提升學生的整體成績,應在合適的時候補充課外知識,拓展學生的知識面,提升學生素質;在學習態(tài)度上,一部分學生上課能全神貫注,積極的投入到學習中去,大部分學生對數(shù)學學習好高鶩遠、心浮氣躁,學習態(tài)度和學習習慣還需培養(yǎng)。學生的學習習慣養(yǎng)成還不理想,預習的習慣,進行總結的習慣,自習課專心致志學習的習慣,主動糾正(考試、作業(yè)后)錯誤的習慣,有些學生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養(yǎng)習慣”,這是本期教學中重點予以關注的。

  二、指導思想:

  通過九年數(shù)學的教學,提供進一步學習所必需的數(shù)學基礎知識與基本技能,進一步培養(yǎng)學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,教育學生掌握基礎知識與基本技能,培養(yǎng)學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學生逐步學會正確、合理地進行運算,逐步學會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。提高學習數(shù)學的興趣,逐步培養(yǎng)學生具有良好的學習習慣,實事求是的態(tài)度。頑強的學習毅力和獨立思考、探索的新思想。培養(yǎng)學生應用數(shù)學知識解決問題的能力。

  三、教學內(nèi)容:

  本學期的教學內(nèi)容共五章:

  第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;

  第25章:解直角三角形;第26章:隨機事件的概率。

  四、教學重點、難點:

  重點:

  1、要求學生掌握證明的基本要求和方法,學會推理論證;

  2、探索證明的思路和方法,提倡證明的多樣性。

  難點:

  1、引導學生探索、猜測、證明,體會證明的必要性;

  2、在教學中滲透如歸納、類比、轉化等數(shù)學思想。

  五、在教學過程中抓住以下幾個環(huán)節(jié):

 。1)認真?zhèn)湔n。認真研究教材及考綱,明確教學目標,抓住重點、難點,精心設計教學過程,重視每一章節(jié)內(nèi)容與前后知識的聯(lián)系及其地位,重視課后反思,設計好每一節(jié)課的師生互動的細節(jié)。

 。2)抓住課堂45分鐘。嚴格按照教學計劃,精心設計每一節(jié)課的每一個環(huán)節(jié),爭取每節(jié)課達到教學目標,突出重點,分散難點,增大課堂容量組織學生人人參與課堂活動,使每個學生積極主動參與課堂活動,使每個學生動手、動口、動腦,及時反饋信息提高課堂效益。

  (3)課后反饋。精選適當?shù)木毩曨}、測試卷,及時批改作業(yè),發(fā)現(xiàn)問題及時給學生面對面的指出并指導學生搞懂弄通,不留一個疑難點,讓學生學有所獲。

  六、教學措施:

  1、認真學習鉆研新課標,掌握教材。

  2、認真?zhèn)湔n,爭取充分掌握學生動態(tài)。

  3、認真上好每一堂課。

  4、落實每一堂課后輔助,查漏補缺。

  5、積極與其它老師溝通,加強教研教改,提高教學水平。

  6、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

  除了以上計劃外,我還將預計開展培優(yōu)和治跛工作,教學中注重數(shù)學理論與社會實踐的聯(lián)系,鼓勵學生多觀察、多思考實際生活中蘊藏的數(shù)學問題,逐步培養(yǎng)學生運用書本知識解決實際問題的能力。

  九年級數(shù)學開學第一課教案 篇3

  一、創(chuàng)設情境 引入課題

  活動1

  問題:

  你們還記得一次函數(shù)圖象與性質嗎?

  設計意圖

  通過創(chuàng)設問題情境,引導學生復習一次函數(shù)圖象的知識,激發(fā)學生參與課堂學習的熱情,為學習反比例函數(shù)的圖象奠定基礎。

  師生形為:

  教師提出問題。學生思考、交流,回答問題。教師根據(jù)學生活動情況進行補充和完善。

  二、類比聯(lián)想 探究交流

  活動2

  問題:

  例2 畫出反比例函數(shù)y= 與y=— 的圖象。

  (教師先引導學生思考,示范畫出反比例函數(shù)y= 的圖象,再讓學生嘗試畫出反比例函數(shù)y=— 的圖象。)

  設計意圖:

  通過畫反比例函數(shù)的圖象使學生進一步了解用描點的方法畫函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎,同時也培養(yǎng)了學生動手操作能力。

  師生形為:

  學生可以先自己動手畫圖,相互觀摩。

  在此活動中,教師應重點關注:

  1學生能否順利進行三種表示方法的相互轉換:

  2是否熟悉作出函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;

  3在動手作圖的過程中,能否勤于動手,樂于探索。

  比較y= 、y=— 的圖象有什么共同特征?它們之間有什么關系?

 。ㄓ蓪W生觀察思考,回答問題,并使學生了解反比例函數(shù)的圖象是一種雙曲線。)

  設計意圖:

  學生通過觀察比較,總結兩個反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標系中的位置。在活動中,讓學生自己去觀察、類比發(fā)現(xiàn),過程讓學生自己去感受,結論讓學生自己去總結,實現(xiàn)學生主動參與、探究新知的目的。

  師生形為:

  學生分組針對問題結合畫出的圖象分類討論,歸納總結反比例函數(shù)圖象的共同點,為后面性質的探索打下基礎。

  教師參與到學生的討論中去,積極引導。

 。ㄈ┨剿鞅容^,發(fā)現(xiàn)規(guī)律

  活動3

  問題:

  觀察反比例函數(shù)y= 與y=— 的圖象。

  你能發(fā)現(xiàn)它們的共同特征以及不同點嗎?

  每個函數(shù)的圖象分別位于哪幾個象限?

  在每一個象限內(nèi),y隨x的變化如何變化?

  由學生分小組討論,觀察思考后進行分析、歸納,得到反比例函數(shù)y= 的性質:

  形狀:反比例函數(shù)的圖象是由兩支雙曲線組成的。因此稱反比例函數(shù)的圖象為雙曲線;

  位置:當k0時,兩支雙曲線分別位于第一,三象限內(nèi),在每個象限內(nèi)y隨x增大而減;當k0時,兩支雙曲線分別位于第二,四象限內(nèi),在每個象限內(nèi)y隨x增大而增大;

  任意一組變量的乘積是一個定值,即xy=k。

 。ㄗ⒁猓弘p曲線的.兩個分支都不會與x軸,y軸相交。)

  學生通過對反比例函數(shù)圖象進行觀察、分析,總結出了反比例函數(shù)的性質,使學生明白性質的可靠性;通過對函數(shù)圖象的位置與k值符號關系的探討,以及反比例函數(shù)的兩個分支在相應的象限內(nèi),y隨x值的增大(或減。┒龃螅ɑ驕p。┑奶接,有利于加深學生對性質的理解和掌握;使學生經(jīng)歷從特殊到一般的過程,體驗知識產(chǎn)生、形成的過程,逐步達到培養(yǎng)學生抽象概括能力和激發(fā)求知欲望;同時通過對反比例函數(shù)增減性的討論,對學生進行辯證唯物主義思想教育。

  四、運用新知,拓展訓練

  設計意圖:

  拓展練習是為了讓學生靈活運用反比例函數(shù)性質解決問題,學生在研究問題的特點時,能夠緊扣性質進行分析,達到理解并掌握性質的目的。

  師生形為:

  學生獨立思考完成。

  教師巡視,引導學困生完成任務。

  五、歸納總結,布置作業(yè)

  問題:

  本節(jié)課學習了哪些知識?在知識應用過程中需要注意什么?你有什么收獲?

  九年級數(shù)學開學第一課教案 篇4

  一、教學目標:

  1、了解作為證明基礎的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。

  2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關性質定理和判定定理。

  3、結合實例體會反證法的含義。

  二、教學重點:

  了解作為證明基礎的幾條公理的內(nèi)容,通過等腰三角形性質證明,掌握證明的基本步驟和書寫格式。

  教學難點:能夠用綜合法證明等腰三角形的關性質定理和判定定理(特別是證明等腰三角形性質時輔助線做法)。

  三、教學方法:

  觀察法。

  四、教學過程:

  復習:

  1、什么是等腰三角形?

  2、你會畫一個等腰三角形嗎?并把你畫的等腰三角形栽剪下來。

  3、試用折紙的辦法回憶等腰三角形有哪些性質?

  新課講解:

  在《證明(一)》一章中,我們已經(jīng)證明了有關平行線的一些結論,運用下面的公理和已經(jīng)證明的定理,我們還可以證明有關三角形的一些結論。

  同學們和我一起來回憶上學期學過的公理

  本套教材選用如下命題作為公理:

  1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;

  2.兩條平行線被第三條直線所截,同位角相等;

  3.兩邊夾角對應相等的兩個三角形全等;(SAS)

  4.兩角及其夾邊對應相等的兩個三角形全等;(ASA)

  5.三邊對應相等的兩個三角形全等;(SSS)

  6.全等三角形的對應邊相等,對應角相等.

  由公理5、3、4、6可容易證明下面的推論:

  推論兩角及其中一角的對邊對應相等的兩個三角形全等。(AAS)證明過程:

  已知:∠A=∠D,∠B=∠E,BC=EF

  求證:△ABC≌△DEF

  證明:∵∠A+∠B+∠C=180°,

  ∠D+∠E+∠F=180°

  (三角形內(nèi)角和等于180°)

  ∴∠C=180°-(∠A+∠B)

  ∠F=180°-(∠D+∠E)

  又∵∠A=∠D,∠B=∠E(已知)

  ∴∠C=∠F

  又∵BC=EF(已知)

  ∴△ABC≌△DEF(ASA)

  定理:等腰三角形的兩個底角相等。

  這一定理可以簡單敘述為:等邊對等角。已知:如圖,在ABC中,AB=AC。

  九年級數(shù)學開學第一課教案 篇5

  教學目標

  1、 會運用因式分解進行簡單的多項式除法。

  2、 會運用因式分解解簡單的方程。

  二、教學重點與難點教學重點:

  教學重點

  因式分解在多項式除法和解方程兩方面的應用。

  教學難點:

  應用因式分解解方程涉及較多的推理過程。

  三、教學過程

  (一)引入新課

  1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應用平方差公式: = (a+b) (a—b)③應用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

 。ǘ⿴熒,講授新課

  1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一個小問題 :這里的x能等于3/2嗎 ?為什么?

  想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內(nèi)練習

  合作學習

  想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學生自己思考、相互之間討論。┦聦嵣希鬉B=0 ,則有下面的結論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0

  試一試:你能運用上面的結論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數(shù)的方程的解也叫做根,當方程的根多于一個時,常用帶足標的字母表示,比如:x1 ,x2

  等練習:課本P162課內(nèi)練習2

  做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?

  教師總結:運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=2004,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=2004+1=2005

  (三)梳理知識,總結收獲因式分解的兩種應用:

  (1)運用因式分解進行多項式除法

 。2)運用因式分解解簡單的方程

  (四)布置課后作業(yè)

  作業(yè)本6、42、課本P163作業(yè)題(選做)

  九年級數(shù)學開學第一課教案 篇6

  教學內(nèi)容:

  義務教育課程標準實驗教科書(人教版)三年級上冊第三者112頁例1簡單的組合。

  教學目標:

  1、通過觀察、猜測、操作等活動,找出最簡單的事物的組合數(shù)。

  2、經(jīng)歷探索簡單事物組合規(guī)律的過程。

  3、培養(yǎng)學生有順序地全面地思考問題的意識。

  4、感受數(shù)學與生活的緊密聯(lián)系,激發(fā)學生學好數(shù)學的信心。

  教學重點:

  經(jīng)歷探索簡單事物組合規(guī)律的過程。

  教學難點:

  能用不同的方法準確地計算出組合數(shù)。

  教具準備:

  教學課件學具準備:每生準備主題圖中相關的學具卡片或實物。

  教學過程:

 。ㄒ唬﹦(chuàng)設問題情境:

  師:小朋友,你們喜歡老師漂亮一點呢還是喜歡老師丑一點?

  生:大多數(shù)的小朋友說喜歡老師漂亮。

  師:那你們幫助老師打扮打扮。我最喜歡紅色體恤和這三件下衣,到底怎樣搭配最漂亮呢?請小朋友們給老師出出主意。小朋友們紛紛發(fā)表自己的意見,并說出了自己的理由。

  師:謝謝。你們的建議都不錯。那我這一件上衣、三件下衣能有多少種不同的穿法呢?

  老師接著問:那我有兩件上衣、三件下衣又有多少種不同的穿法呢?有說4種、有說5種、也有說6種的,到底有幾種呢?

 。ǘ

  1.自主合作探索新知試一試

  師:請同學們也試著想一想,如果你覺得直接想象有困難的話可以借助手中的學具卡片擺一擺。學生活動教師巡視。

  2.發(fā)現(xiàn)問題學生匯報所寫個數(shù),教師根據(jù)巡視的情況重點展示幾份,引導學生發(fā)現(xiàn)問題:有的重復了,有的漏寫了。

  3.小組討論師:每個同學算出的個數(shù)不同,怎樣才能很快算出兩件上衣、三件下衣有多少種不同的穿法呢?并做到不重復不遺漏呢?學生以小組為單位交流討論。

  4.小組匯報匯報時可能會出現(xiàn)下面幾種情況:

 。1)、無序的。用學具卡片或實物擺,然后再數(shù)。

  (2)、用連線的方法算出。

 。3)、用圖式的方法算出。引導學生及時評價每一種方法的優(yōu)缺點,使其把適合自己的方法掌握起來。

  5.小結教師簡單小結學生所想方法引出練習內(nèi)容見課本112頁。

 。ㄈ┩卣箲

  數(shù)字2、3、4、5、6、7寫出不同的兩位數(shù)?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△請你試著擺出其他幾種排法。

  教學反思:

  九年級數(shù)學開學第一課教案 篇7

  第一課時

  素質教育目標

 。ㄒ唬┲R教學點

  1.使學生初步了解統(tǒng)計知識是應用廣泛的數(shù)學內(nèi)容 .

  2.了解平均數(shù)的意義,會計算一組數(shù)據(jù)的平均數(shù) .

  3.當一組數(shù)據(jù)的數(shù)值較大時,會用簡算公式計算一組數(shù)據(jù)的平均數(shù) .

 。ǘ┠芰τ柧汓c

  培養(yǎng)學生的觀察能力、計算能力 .

  (三)德育滲透點

  1.培養(yǎng)學生認真、耐心、細致的學習態(tài)度和學習習慣 .

  2.滲透數(shù)學來源于實踐,反地來又作用于實踐的觀點 .

 。ㄋ模┟烙凉B透點

  通過本課的學習,滲透數(shù)學公式的簡單美和結構的嚴謹美,展示了寓深奧于淺顯,寓紛繁于嚴謹?shù)霓q證統(tǒng)一的數(shù)學美 .

  重點·難點·疑點及解決辦法

  1.教學重點:平均數(shù)的概念及其計算 .

  2.教學難點:平均數(shù)的簡化計算 .

  3.教學疑點:平均數(shù)簡化公式的應用,a如何選擇 .

  4.解決辦法:分清兩個公式,公式②的運用要選擇一個適當?shù)腶 .

  教學步驟

  (一)明確目標

  在日常生活中,我們常與數(shù)據(jù)打交道,例如,電視臺每天晚上都要預報第二天當?shù)氐淖畹蜌鉁嘏c最高氣溫,商店每天都要結算一下當天的營業(yè)額,每個班次的飛機都要統(tǒng)計一下乘客的人數(shù)等.這些都涉及數(shù)據(jù)的計算問題.請同學們思考下面問題.(教師出示幻燈片)

  為了從甲乙兩名學生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗.兩人在相同條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1.怎樣比較兩個人的成績?2.應選哪一個人參加射擊比賽?

  教師要引導學生觀察,給學生充分的時間去思考,并可以分成小組討論解決辦法.

  對于這個問題,部分學生可能感到無從下手,部分學生可能想到去比較兩組數(shù)據(jù)的平均,讓學生動手具體算一下兩組數(shù)據(jù)的平均數(shù)結果它們相等在學生無法解決此問題的情況下,教師說明,這正是本章要解決的問題之一(寫出課題).這樣做的目的是教師有意創(chuàng)設問題情境、制造懸念,這不僅能激發(fā)學生學習的積極性和自覺性,引起學生對所學課程的注意,還能誘發(fā)學生探求新知識的濃厚興趣.

  (二)整體感知

  解決類似上述的問題要用到統(tǒng)計學的知識,統(tǒng)計學是一門研究如何收集、整理、分析數(shù)據(jù)并據(jù)之做出推斷的科學,它以概率論為基礎,著重研究如何根據(jù)樣本的性質去推測總體的性質.在當今的信息時代,統(tǒng)計學的應用非常廣泛,以至于它已滲透到整個社會生活的各個方面.本章我們將學習統(tǒng)計學的一些初步知識.

 。ㄈ┙虒W過程

  這節(jié)課我們首先來學習平均數(shù).

  1.(出示幻燈片)請同學看下面問題:

  某班第一小組一次數(shù)學測驗的成績?nèi)缦拢?/p>

  86 91 100 72 93 89 90 85 75 95

  這個小組的平均成績是多少?

  教師引導學生動筆計算,并找一名學生到黑板板演,講完引例后,引導學生歸納出求平均數(shù)方法,這樣做使學生對平均數(shù)的計算公式能有深刻的認識 .

  2.平均數(shù)的概念及計算公式

  一般地,如果有n個數(shù) .

  那么 ①

  叫做這n個數(shù)的平均數(shù), 讀作“x撥” .

  這是在初中數(shù)學課本中第一次出現(xiàn)帶有省略號的用字母表示的n個數(shù)相加的一般寫法 .學生對此可能會感到比較抽象,不太習慣,要向學生強調,采用這種寫法是簡化表示,是為了使問題的討論具有一般性 .教師應通過對公式的剖析,使學生正確理解公式,并掌握公式中各元素的意義 .

  3.平均數(shù)計算公式①的應用

  例1 一個地區(qū)某年1月上旬各天的最低氣溫依次是(單位:℃):

 。6,-5,-7,-6,-4,-5,-7,-8,-7

  求它們的平均氣溫 .

  讓學生動手計算,以鞏固平均數(shù)計算公式(一名學生板演)

  教師應強調:①解題格式 .②在統(tǒng)計學里處理的數(shù)據(jù)包括負數(shù) .③在本章中,如無特殊說明,平均數(shù)計算結果保留的位數(shù)與原數(shù)據(jù)相同 .

  例2 從一批機器零件毛坯中取出20件,稱得它們的質量如下(單位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  計算它們的平均質量 .(用投影儀打出)

  引導學生兩人一組完成計算,然后一起對答案 .由于數(shù)據(jù)較大,計算較繁,可能會出現(xiàn)不同的答案 .正好為下面提出簡化計算公式作好鋪墊 .

  教師提出問題:像例2這樣,數(shù)據(jù)較大,計算較繁,因而容易出錯,有沒有較為簡便的算法呢?引導學生觀察數(shù)據(jù)有什么特點?都接近于哪一個數(shù)?啟發(fā)學生討論,尋找簡便算法 .

  學生回答:數(shù)據(jù)都在200左右波動,可將各數(shù)據(jù)同時減去200,轉而計算一組數(shù)值較小的新數(shù)據(jù)的平均數(shù),至此讓學生再一次兩人一組用簡便方法計算例2,并與前面計算的結果相比較是否一樣 .

  講完例2后,教師指出幾點:常數(shù)a的取法不是惟一的; 讀作“x——撇——撥”;;簡化計算的結果與前面毛算的結果相同 .

  通過學生的動手計算,若產(chǎn)生困難或錯誤,教師及時點撥,引導學生尋找解決問題的方法,這不僅可以激發(fā)學生學習的興趣,更培養(yǎng)了學生的發(fā)散思維能力,同時也使學生對公式②的推導更容易接受 .

  3.推導公式②

  一般地,當一組數(shù)據(jù) 的各個數(shù)值較大時,可將各數(shù)據(jù)同時減去一個適當?shù)某?shù)a,得到,

  那么 ,

  因此,

  即 ②

  為了加深學生對公式②的認識,再讓學生指出例2的 、 、 各是什么?(學生回答)

  課堂練習:

  教材P148中~P149中1,2,3

  (四)總結、擴展

  知識小結:1.統(tǒng)計學是一門與數(shù)據(jù)打交道的學問,應用十分廣泛 .本章將要學習的是統(tǒng)計學的初步知識 .

  2.求n個數(shù)據(jù)的平均數(shù)的公式① .

  3.平均數(shù)的簡化計算公式② .這個公式很重要,要學會運用 .

  方法小結:通過本節(jié)課我們學到了示一組數(shù)據(jù)平均數(shù)的方法 .當數(shù)據(jù)比較小時,可用公式①直接計算 .當數(shù)據(jù)比較大,而且都在某一個數(shù)左右波動時,可選用公式②進行計算 .

  八、布置作業(yè)

  教材P153中1、2、3、4 .

  九年級數(shù)學開學第一課教案 篇8

  一、教學目標

  1.經(jīng)歷兩個三角形相似的探索過程,進一步發(fā)展學生的探究、交流能力。

  2.掌握“兩角對應相等,兩個三角形相似”的判定方法。

  3.能夠運用三角形相似的條件解決簡單的問題。

  二、重點、難點

  1.重點:三角形相似的判定方法3--“兩角對應相等,兩個三角形相似”

  2.難點:三角形相似的判定方法3的運用。

  3.難點的突破方法

  (1)在兩個三角形中,只要滿足兩個對應角相等,那么這兩個三角形相似,這是三角形相似中最常用的一個判定方法。

  (2)公共角、對頂角、同角的余角(或補角)、同弧上的圓周角都是相等的,是判別兩個三角形相似的重要依據(jù)。

  (3)如果兩個三角形是直角三角形, 則只要再找到一對銳角相等即可說明這兩個三角形相似。

  三、例題的意圖

  本節(jié)課安排了兩個例題,例1是教材P48的例2,是一個圓中證相似的題目,這個題目比較簡單,可以讓學生來分析、讓學生說出思維的方法、讓學生自己寫出證明過程。并讓學生掌握遇到等積式,應先將其化為比例式的方法。

  例2是一個補充的題目,選擇這個題目是希望學生通過這個題的學習,掌握利用三角形相似的知識來求線段長的方法,為下節(jié)課學習“27.2.2 相似三角形的應用舉例”打基礎。

  四、課堂引入

  1.復習提問:

  (1)我們已學習過哪些判定三角形相似的方法?

  (2)如圖,△ABC中,點D在AB上,如果AC2=AD?AB,

  九年級數(shù)學開學第一課教案 篇9

  【學習目標】

  1.了解圓周角的概念.

  2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

  3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

  4.熟練掌握圓周角的定理及其推理的靈活運用.

  設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

  【學習過程】

  一、溫故知新:

  (學生活動)同學們口答下面兩個問題.

  1.什么叫圓心角?

  2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?

  二、自主學習:

  自學教材P90---P93,思考下列問題:

  1、什么叫圓周角?圓周角的兩個特征:。

  2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

  (1)一個弧上所對的圓周角的個數(shù)有多少個?

  (2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?

  (3).同弧上的圓周角與圓心角有什么關系?

  3、默寫圓周角定理及推論并證明。

  4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質成立嗎?

  5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

  三、典型例題:

  例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。

  例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

  四、鞏固練習:

  1、(教材P93練習1)

  解:

  2、(教材P93練習2)

  3、(教材P93練習3)

  證明:

  4、(教材P95習題24.1第9題)

  五、總結反思:

  【達標檢測】

  1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于().

  A.140°B.110°C.120°D.130°

  (1)(2)(3)

  2.如圖2,∠1、∠2、∠3、∠4的大小關系是()

  A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

  C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

  3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

  A.100°B.110°C.120°D.130°

  4.半徑為2a的⊙O中,弦AB的長為2a,則弦AB所對的圓周角的度數(shù)是________.

  5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.

  (4)(5)

  6.(中考題)如圖5,于,若,則

  7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

  【拓展創(chuàng)新】

  1.如圖,已知AB=AC,∠APC=60°

  (1)求證:△ABC是等邊三角形.

  (2)若BC=4cm,求⊙O的面積.

  3、教材P95習題24.1第12、13題。

  【布置作業(yè)】

  教材P95習題24.1第10、11題。

【九年級數(shù)學開學第一課教案】相關文章:

初中數(shù)學開學第一課教案09-01

小學數(shù)學開學第一課教案10-17

2022開學第一課數(shù)學教案08-17

小學數(shù)學開學第一課教案202208-17

高中數(shù)學開學第一課教案10-24

2022高二數(shù)學開學第一課教案08-17

高中數(shù)學開學第一課教案202208-17

高一開學第一課數(shù)學教案04-24

高一數(shù)學上冊開學第一課教案04-24