久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

考研數(shù)學一大綱2014

發(fā)布時間:2017-03-26 編輯:1027

  一、試卷滿分及答題時間

  試卷滿分為150分,考試時間為180分鐘

  二、內(nèi)容比例

  高等數(shù)學 約56%

  線性代數(shù) 約22%

  概率論與數(shù)理統(tǒng)計 約22%

  三、題型結(jié)構(gòu)

  單項選擇題

  填空題

  解答題(包括證明題) 8小題,每小題4分,共32分 6小題,每小題4分,共24分 9小題,共94分

  高等數(shù)學

  一、函數(shù)、極限、連續(xù)

  考試內(nèi)容

  函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立

  數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調(diào)有界準則和夾逼準則 兩個重要極限:

  sinx1lim1, lim1e x0xxx

  函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關(guān)系.

  2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

  3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

  5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系.

  6.掌握極限的性質(zhì)及四則運算法則.

  7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.

  8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.

  9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.

  10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定x理),并會應用這些性質(zhì).

  本章考查焦點

  1.極限的計算及數(shù)列收斂性的判斷

  2.無窮小的性質(zhì)

  二、一元函數(shù)微分學

  考試內(nèi)容

  導數(shù)和微分的概念 導數(shù)的幾何意義和物理意義 函數(shù)的可導性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導數(shù)和微分的四則運算 基本初等函數(shù)的導數(shù) 復合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導數(shù) 一階微分形式的不變性 微分中值定理 洛必達(L’Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值和最小值 弧微分 曲率的概念 曲率圓與曲率半徑

  考試要求

  1.理解導數(shù)和微分的概念,理解導數(shù)與微分的關(guān)系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關(guān)系.

  2.掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分.

  3.了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).

  4.會求分段函數(shù)的導數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù).

  5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.

  6.掌握用洛必達法則求未定式極限的方法.

  7.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應用.

  8.會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設函數(shù)

  圖形是凹的;當

  形.

  9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑.

  本章考查焦點

  1.洛必達法則求極限

  2.導數(shù)的應用

  f(x)具有二階導數(shù)。當f(x)0時,f(x)的f(x)0時,f(x)的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖

  三、一元函數(shù)積分學

  考試內(nèi)容

  原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導數(shù)

   牛頓一萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 反常(廣義)積分 定積分的應用

  考試要求

  1.理解原函數(shù)的概念,理解不定積分和定積分的概念.

  2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.

  3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.

  4.理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓-萊布尼茨公式.

  5.了解反常積分的概念,會計算反常積分.

  6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值.

  本章考查焦點

  1.用積分表達、計算幾何量和物理量

  2.積分上限的函數(shù)的導數(shù)

  3.積分中值定理

  4.積分的計算

  四、向量代數(shù)和空間解析幾何

  考試內(nèi)容

  向量的概念 向量的線性運算 向量的數(shù)量積和向量積 向量的混合積 兩向量垂直、平行的條件 兩向量的夾角 向量的坐標表達式及其運算 單位向量 方向數(shù)與方向余弦 曲面方程和空間曲線方程的概念 平面方程、直線方程 平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件 點到平面和點到直線的距離 球面 柱面 旋轉(zhuǎn)曲面 常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程 空間曲線在坐標面上的投影曲線方程

最新推薦
熱門推薦