久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

微軟面試題目

時間:2024-09-19 14:36:10 面試筆試 我要投稿

微軟面試題目2015

  【1】假設有一個池塘,里面有無窮多的水,F(xiàn)有2個空水壺,容積分別為5升和6升。問題是如何只用這2個水壺從池塘里取得3升的水。

微軟面試題目2015

  由滿6向空5倒,剩1升,把這1升倒5里,然后6剩滿,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后將6剩余的2升,倒入空的5里面,再灌滿6向5里倒3升,剩余3升。

  【2】周雯的媽媽是豫林水泥廠的化驗員。一天,周雯來到化驗室做作業(yè)。做完后想出去玩。"等等,媽媽還要考你一個題目,"她接著說,"你看這6只做化驗用的玻璃杯,前面3只盛滿了水,后面3只是空的。你能只移動1只玻璃杯,就便盛滿水的杯子和空杯子間隔起來嗎?"愛動腦筋的周雯,是學校里有名的"小機靈",她只想了一會兒就做到了。請你想想看,"小機靈"是怎樣做的?

  設杯子編號為ABCDEF,ABC為滿,DEF為空,把B中的水倒進E中即可。

  【3】三個小伙子同時愛上了一個姑娘,為了決定他們誰能娶這個姑娘,他們決定用槍進行一次決斗。小李的命中率是30%,小黃比他好些,命中率是50%,最出色的槍手是小林,他從不失誤,命中率是100%。由于這個顯而易見的事實,為公平起見,他們決定按這樣的順序:小李先開槍,小黃第二,小林最后。然后這樣循環(huán),直到他們只剩下一個人。那么這三個人中誰活下來的機會最大呢?他們都應該采取什么樣的策略?

  小林在輪到自己且小黃沒死的條件下必殺黃,再跟菜鳥李單挑。

  所以黃在林沒死的情況下必打林,否則自己必死。

  小李經(jīng)過計算比較(過程略),會決定自己先打小林。

  于是經(jīng)計算,小李有873/2600≈33.6%的生機;

  小黃有109/260≈41.9%的生機;

  小林有24.5%的生機。

  哦,這樣,那小李的第一槍會朝天開,以后當然是打敵人,誰活著打誰;

  小黃一如既往先打林,小林還是先干掉黃,冤家路窄啊!

  最后李,黃,林存活率約38:27:35;

  菜鳥活下來抱得美人歸的幾率大。

  李先放一空槍(如果合伙干中林,自己最吃虧)黃會選林打一槍(如不打林,自己肯定先玩完了)林會選黃打一槍(畢竟它命中率高)李黃對決0.3:0.280.4可能性李林對決0.3:0.60.6可能性成功率0.73

  李和黃打林李黃對決0.3:0.40.7*0.4可能性李林對決0.3:0.7*0.6*0.70.7*0.6可能性成功率0.64

  【4】一間囚房里關押著兩個犯人。每天監(jiān)獄都會為這間囚房提供一罐湯,讓這兩個犯人自己來分。起初,這兩個人經(jīng)常會發(fā)生爭執(zhí),因為他們總是有人認為對方的湯比自己的多。后來他們找到了一個兩全其美的辦法:一個人分湯,讓另一個人先選。于是爭端就這么解決了?墒牵F(xiàn)在這間囚房里又加進來一個新犯人,現(xiàn)在是三個人來分湯。必須尋找一個新的方法來維持他們之間的和平。該怎么辦呢?按:心理問題,不是邏輯問題

  是讓甲分湯,分好后由乙和丙按任意順序給自己挑湯,剩余一碗留給甲。這樣乙和丙兩人的總和肯定是他們兩人可拿到的最大。然后將他們兩人的湯混合之后再按兩人的方法再次分湯。

  【5】在一張長方形的桌面上放了n個一樣大小的圓形硬幣。這些硬幣中可能有一些不完全在桌面內(nèi),也可能有一些彼此重疊;當再多放一個硬幣而它的圓心在桌面內(nèi)時,新放的硬幣便必定與原先某些硬幣重疊。請證明整個桌面可以用4n個硬幣完全覆蓋。

  要想讓新放的硬幣不與原先的硬幣重疊,兩個硬幣的圓心距必須大于直徑。也就是說,對于桌面上任意一點,到最近的圓心的距離都小于2,所以,整個桌面可以用n個半徑為2的硬幣覆蓋。

  把桌面和硬幣的尺度都縮小一倍,那么,長、寬各是原桌面一半的小桌面,就可以用n個半徑為1的硬幣覆蓋。那么,把原來的桌子分割成相等的4塊小桌子,那么每塊小桌子都可以用n個半徑為1的硬幣覆蓋,因此,整個桌面就可以用4n個半徑為1的硬幣覆蓋。

  【6】一個球、一把長度大約是球的直徑2/3長度的直尺.你怎樣測出球的半徑?方法很多,看看誰的比較巧妙

  【7】五個大小相同的一元人民幣硬幣。要求兩兩相接觸,應該怎么擺?

  底下放一個1,然后2 3放在1上面,另外的4 5豎起來放在1的上面。

  【8】猜牌問題S先生、P先生、Q先生他們知道桌子的抽屜里有16張撲克牌:紅桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方塊A、5。約翰教授從這16張牌中挑出一張牌來,并把這張牌的點數(shù)告訴P先生,把這張牌的花色告訴Q先生。這時,約翰教授問P先生和Q先生:你們能從已知的點數(shù)或花色中推知這張牌是什么牌嗎?于是,S先生聽到如下的對話:P先生:我不知道這張牌。Q先生:我知道你不知道這張牌。P先生:現(xiàn)在我知道這張牌了。Q先生:我也知道了。聽罷以上的對話,S先生想了一想之后,就正確地推出這張牌是什么牌。請問:這張牌是什么牌?

  方塊5

  【9】一個教授邏輯學的教授,有三個學生,而且三個學生均非常聰明!一天教授給他們出了一個題,教授在每個人腦門上貼了一張紙條并告訴他們,每個人的紙條上都寫了一個正整數(shù),且某兩個數(shù)的和等于第三個!(每個人可以看見另兩個數(shù),但看不見自己的)教授問第一個學生:你能猜出自己的數(shù)嗎?回答:不能,問第二個,不能,第三個,不能,再問第一個,不能,第二個,不能,第三個:我猜出來了,是144!教授很滿意的笑了。請問您能猜出另外兩個人的數(shù)嗎?

  經(jīng)過第一輪,說明任何兩個數(shù)都是不同的。第二輪,前兩個人沒有猜出,說明任何一個數(shù)都不是其它數(shù)的兩倍,F(xiàn)在有了以下幾個條件:1.每個數(shù)大于02.兩兩不等3.任意一個數(shù)不是其他數(shù)的兩倍。每個數(shù)字可能是另兩個之和或之差,第三個人能猜出144,必然根據(jù)前面三個條件排除了其中的一種可能。假設:是兩個數(shù)之差,即x-y=144。這時1(x,y>0)和2(x!=y)都滿足,所以要否定x+y必然要使3不滿足,即x+y=2y,解得x=y,不成立(不然第一輪就可猜出),所以不是兩數(shù)之差。因此是兩數(shù)之和,即x+y=144。同理,這時1,2都滿足,必然要使3不滿足,即x-y=2y,兩方程聯(lián)立,可得x=108,y=36。

  這兩輪猜的順序其實分別為這樣:第一輪(一號,二號),第二輪(三號,一號,二號)。這樣分大家在每輪結束時獲得的信息是相同的(即前面的三個條件)。

  那么就假設我們是C,來看看C是怎么做出來的:C看到的是A的36和B的108,因為條件,兩個數(shù)的和是第三個,那么自己要么是72要么是144(猜到這個是因為72的話,108就是36和72的和,144的話就是108和36的和。這樣子這句話看不懂的舉手):

  假設自己(C)是72的話,那么B在第二回合的時候就可以看出來,下面是如果C是72,B的思路:這種情況下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到這個是因為36的話,36加36等于72,108的話就是36和108的和):

  如果假設自己(B)頭上是36,那么,C在第一回合的時候就可以看出來,下面是如果B是36,C的思路:這種情況下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(這個不再解釋了):

  如果假設自己(C)頭上是0,那么,A在第一回合的時候就可以看出來,下面是如果C是0,A的思路:這種情況下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(這個不再解釋了),那他可以一口報出自己頭上的36。(然后是逆推逆推逆推),現(xiàn)在A在第一回合沒報出自己的36,C(在B的想象中)就可以知道自己頭上不是0,如果其他和B的想法一樣(指B頭上是36),那么C在第一回合就可以報出自己的72,F(xiàn)在C在第一回合沒報出自己的36,B(在C的想象中)就可以知道自己頭上不是36,如果其他和C的想法一樣(指C頭上是72),那么B在第二回合就可以報出自己的108。現(xiàn)在B在第二回合沒報出自己的108,C就可以知道自己頭上不是72,那么C頭上的唯一可能就是144了。

  【10】某城市發(fā)生了一起汽車撞人逃跑事件,該城市只有兩種顏色的車,藍15%綠85%,事發(fā)時有一個人在現(xiàn)場看見了,他指證是藍車,但是根據(jù)專家在現(xiàn)場分析,當時那種條件能看正確的可能性是80%那么,肇事的車是藍車的概率到底是多少?

  15%*80%/(85%×20%+15%*80%)


【微軟面試題目】相關文章:

微軟公司的一道經(jīng)典招聘題目面試技巧11-22

微軟面試雜談11-19

一道微軟公司的經(jīng)典面試題目及答案02-18

關于微軟的面試 筆試11-20

微軟公司的一道經(jīng)典招聘題目02-18

微軟面試--“車輪戰(zhàn)”02-18

我在美國微軟的魔鬼面試11-12

面試者頭疼的微軟試題從哪來面試技巧02-18

電話面試 題目11-20

微軟beijing Inside sales 電話面試11-20