- 小學(xué)數(shù)學(xué)主題手抄報(bào)材料 推薦度:
- 相關(guān)推薦
數(shù)學(xué)手抄報(bào)材料
1、結(jié)構(gòu)
許多如數(shù)、函數(shù)、集合等數(shù)學(xué)對(duì)象都有著內(nèi)含的結(jié)構(gòu)。這些對(duì)象的結(jié)構(gòu)性質(zhì)被探討于群、環(huán)、體及其他本身即為此物件的抽象系統(tǒng)中。此為抽象代數(shù)的領(lǐng)域。在此有一個(gè)很重要的概念,即向量,且廣義化至向量空間,并研究于線性代數(shù)中。向量的研究結(jié)合了數(shù)學(xué)的三個(gè)基本領(lǐng)域:數(shù)量、結(jié)構(gòu)及空間。向量分析則將其擴(kuò)展至第四個(gè)基本的領(lǐng)域內(nèi),即變化。
2、空間
空間的研究源自于歐式幾何。三角學(xué)則結(jié)合了空間及數(shù),且包含有非常著名的勾股定理,F(xiàn)今對(duì)空間的研究更推廣到了更高維的幾何、非歐幾何及拓?fù)鋵W(xué)。數(shù)和空間在解析幾何、微分幾何和代數(shù)幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計(jì)算等概念。在代數(shù)幾何中有著如多項(xiàng)式方程的解集等幾何對(duì)象的描述,結(jié)合了數(shù)和空間的概念;亦有著拓?fù)淙旱难芯浚Y(jié)合了結(jié)構(gòu)與空間。李群被用來研究空間、結(jié)構(gòu)及變化。
3、基礎(chǔ)
為了搞清楚數(shù)學(xué)基礎(chǔ),數(shù)學(xué)邏輯和集合論等領(lǐng)域被發(fā)展了出來。德國數(shù)學(xué)家康托爾(1845-1918)首創(chuàng)集合論,大膽地向“無窮大”進(jìn)軍,為的是給數(shù)學(xué)各分支提供一個(gè)堅(jiān)實(shí)的基礎(chǔ),而它本身的內(nèi)容也是相當(dāng)豐富的,提出了實(shí)無窮的思想,為以后的數(shù)學(xué)發(fā)展作出了不可估量的貢獻(xiàn)。
集合論在20世紀(jì)初已逐漸滲透到了各個(gè)數(shù)學(xué)分支,成為了分析理論,測(cè)度論,拓?fù)鋵W(xué)及數(shù)理科學(xué)中必不可少的工具。20世紀(jì)初,數(shù)學(xué)家希爾伯特在德國傳播了康托爾的思想,把集合論稱為“數(shù)學(xué)家的樂園”和“數(shù)學(xué)思想最驚人的產(chǎn)物”。英國哲學(xué)家羅素把康托的工作譽(yù)為“這個(gè)時(shí)代所能夸耀的最巨大的工作”。
4、邏輯
數(shù)學(xué)邏輯專注在將數(shù)學(xué)置于一堅(jiān)固的公理架構(gòu)上,并研究此一架構(gòu)的成果。就其本身而言,其為哥德爾第二不完備定理的產(chǎn)地,而這或許是邏輯中最廣為流傳的成果。現(xiàn)代邏輯被分成遞歸論、模型論和證明論,且和理論計(jì)算機(jī)科學(xué)有著密切的關(guān)聯(lián)性。
5、符號(hào)
也許我國古代的算籌是世界上最早使用的符號(hào)之一,起源于商代的占卜。
我們現(xiàn)今所使用的大部分?jǐn)?shù)學(xué)符號(hào)都是到了16世紀(jì)后才被發(fā)明出來的。在此之前,數(shù)學(xué)是用文字書寫出來,這是個(gè)會(huì)限制住數(shù)學(xué)發(fā)展的刻苦程序。現(xiàn)今的符號(hào)使得數(shù)學(xué)對(duì)于人們而言更便于操作,但初學(xué)者卻常對(duì)此感到怯步。它被極度的壓縮:少量的符號(hào)包含著大量的訊息。如同音樂符號(hào)一般,現(xiàn)今的數(shù)學(xué)符號(hào)有明確的語法和難以以其他方法書寫的訊息編碼。
6、嚴(yán)謹(jǐn)性
數(shù)學(xué)語言亦對(duì)初學(xué)者而言感到困難。如何使這些字有著比日常用語更精確的意思,亦困惱著初學(xué)者,如開放和域等字在數(shù)學(xué)里有著特別的意思。數(shù)學(xué)術(shù)語亦包括如同胚及可積性等專有名詞。但使用這些特別符號(hào)和專有術(shù)語是有其原因的:數(shù)學(xué)需要比日常用語更多的精確性。數(shù)學(xué)家將此對(duì)語言及邏輯精確性的要求稱為“嚴(yán)謹(jǐn)”。
嚴(yán)謹(jǐn)是數(shù)學(xué)證明中很重要且基本的一部分。數(shù)學(xué)家希望他們的定理以系統(tǒng)化的推理依著公理被推論下去。這是為了避免依著不可靠的直觀,從而得出錯(cuò)誤的“定理”或“證明”,而這情形在歷史上曾出現(xiàn)過許多的例子。在數(shù)學(xué)中被期許的嚴(yán)謹(jǐn)程度因著時(shí)間而不同:希臘人期許著仔細(xì)的論點(diǎn),但在牛頓的時(shí)代,所使用的方法則較不嚴(yán)謹(jǐn)。牛頓為了解決問題所作的定義,到了十九世紀(jì)才讓數(shù)學(xué)家用嚴(yán)謹(jǐn)?shù)姆治黾罢降淖C明妥善處理。今日,數(shù)學(xué)家們則持續(xù)地在爭(zhēng)論電腦輔助證明的嚴(yán)謹(jǐn)度。當(dāng)大量的計(jì)算難以被驗(yàn)證時(shí),其證明亦很難說是有效地嚴(yán)謹(jǐn)。
【數(shù)學(xué)手抄報(bào)材料】相關(guān)文章:
小學(xué)數(shù)學(xué)主題手抄報(bào)材料06-20
勵(lì)志手抄報(bào)材料05-23
法制手抄報(bào)圖片材料07-03
慶祝元宵手抄報(bào)材料07-04
慶元宵手抄報(bào)材料07-08
鬧元宵手抄報(bào)材料07-10
關(guān)于元宵手抄報(bào)材料07-08