關(guān)于高中數(shù)學(xué)說課稿模板匯總6篇
在教學(xué)工作者開展教學(xué)活動(dòng)前,時(shí)常需要編寫說課稿,借助說課稿可以有效提升自己的教學(xué)能力。那么應(yīng)當(dāng)如何寫說課稿呢?下面是小編為大家收集的高中數(shù)學(xué)說課稿6篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
高中數(shù)學(xué)說課稿 篇1
一、教材分析:
1、教材的地位與作用:
線性規(guī)劃是運(yùn)籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識(shí)展開的,它是對(duì)二元一次不等式的深化和再認(rèn)識(shí)、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識(shí)和解決實(shí)際問題的能力。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
二、目標(biāo)分析:
在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識(shí)目標(biāo)、能力目標(biāo)和情感目標(biāo)。
知識(shí)目標(biāo):
1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行
域和最優(yōu)解等概念;
2、理解線性規(guī)劃問題的圖解法;
3、會(huì)利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.
能力目標(biāo):
1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。
2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。
3、在對(duì)具體事例的感性認(rèn)識(shí)上升到對(duì)線性規(guī)劃的理性認(rèn)識(shí)過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。
情感目標(biāo):
1、讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會(huì)中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。
2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會(huì)用運(yùn)動(dòng)觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識(shí)論的思想。
三、過程分析:
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過程分為以下六個(gè)教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運(yùn)用新知,解決問題;6、歸納總結(jié),鞏固提高。
1、創(chuàng)設(shè)情境,提出問題:
在課堂教學(xué)的開始,我以一組生動(dòng)的動(dòng)畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運(yùn)輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財(cái)富,還被列為20世紀(jì)對(duì)科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境。
高中數(shù)學(xué)說課稿 篇2
尊敬的各位專家、評(píng)委:
下午好!
我的抽簽序號(hào)是___,今天我說課的課題是《______》第__課時(shí)。 我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對(duì)于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學(xué)法分析、教學(xué)過程分析和評(píng)價(jià)分析四方面來談?wù)勎覍?duì)教材的理解和教學(xué)的設(shè)計(jì),敬請(qǐng)各位專家、評(píng)委批評(píng)指正。
一、教材分析
。ㄒ唬┑匚慌c作用
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。
。ǘ⿲W(xué)情分析
。1)學(xué)生已熟練掌握_________________。
。2)學(xué)生的知識(shí)經(jīng)驗(yàn)較豐富,具備了教強(qiáng)的抽象思維能力和演繹推理能力。
。3)學(xué)生思維活潑,積極性高,已初步形成對(duì)數(shù)學(xué)問題的合作探究能力。
。4) 學(xué)生層次參次不齊,個(gè)體差異比較明顯。
二、目標(biāo)分析
新課標(biāo)指出“三維目標(biāo)”是一個(gè)密切聯(lián)系的有機(jī)整體,應(yīng)該以獲得知識(shí)與技能的過程,同時(shí)成為學(xué)會(huì)學(xué)習(xí)和正確價(jià)值觀。這要求我們?cè)诮虒W(xué)中以知識(shí)技能的培養(yǎng)為主線,透情感態(tài)度與價(jià)值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計(jì)必須從學(xué)生的角度出發(fā),根據(jù)__在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):
。ㄒ唬┙虒W(xué)目標(biāo)
。1)知識(shí)與技能
使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。
。2)過程與方法
引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價(jià)值觀
在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
(二)重點(diǎn)難點(diǎn)
本節(jié)課的教學(xué)重點(diǎn)是________,教學(xué)難點(diǎn)是_________。
三、教法、學(xué)法分析
(一)教法
基于本節(jié)課的內(nèi)容特點(diǎn)和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗(yàn)教學(xué)法為主來完成教學(xué),為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:
1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生求知欲,調(diào)動(dòng)學(xué)生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念.
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚㈨樌赝瓿蓵姹磉_(dá).
。ǘ⿲W(xué)法在學(xué)法上我重視了: 1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的質(zhì)的飛躍。 2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
四、教學(xué)過程分析
。ㄒ唬┙虒W(xué)過程設(shè)計(jì)
教學(xué)是一個(gè)教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵(lì)、評(píng)價(jià)等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對(duì)知識(shí)的發(fā)生、發(fā)展和運(yùn)用過程的演繹、解釋和探究來組織和推動(dòng)教學(xué)。
(1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動(dòng)的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的
設(shè)計(jì)改變了傳統(tǒng)目的明確的設(shè)計(jì)方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
。2)引導(dǎo)探究,建構(gòu)概念。 數(shù)學(xué)概念的形成來自解決實(shí)際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習(xí)活動(dòng)中去,從自己的經(jīng)驗(yàn)和已有的知識(shí)基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動(dòng)過程.
(3)自我嘗試,初步應(yīng)用。 有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實(shí)踐體驗(yàn),師生互動(dòng)學(xué)習(xí),生生合作交流,共同探究.
。4)當(dāng)堂訓(xùn)練,鞏固深化。 通過學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)知識(shí)識(shí)的再次深化。
。5)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對(duì)知識(shí)的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。我設(shè)計(jì)了三個(gè)問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?(2)通過本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
。ǘ┳鳂I(yè)設(shè)計(jì)
作業(yè)分為必做題和選做題,必做題對(duì)本節(jié)課學(xué)生知識(shí)水平的反饋,選做題是對(duì)本節(jié)課內(nèi)容的延伸與,注重知識(shí)的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.
我設(shè)計(jì)了以下作業(yè): (1)必做題 (2)選做題
。ㄈ┌鍟O(shè)計(jì) 板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識(shí)結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);通過使用幻燈片輔助板書,節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。
五、評(píng)價(jià)分析
學(xué)生學(xué)習(xí)的結(jié)果評(píng)價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評(píng)價(jià)。我采用及時(shí)點(diǎn)評(píng)、延時(shí)點(diǎn)評(píng)與學(xué)生互評(píng)相結(jié)合,全面考查學(xué)生在知識(shí)、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評(píng)價(jià)學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評(píng)價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對(duì)____是否有一個(gè)完整的集訓(xùn),并進(jìn)行及時(shí)的調(diào)整和補(bǔ)充。 以上就是我對(duì)本節(jié)課的理解和設(shè)計(jì),敬請(qǐng)各位專家、評(píng)委批評(píng)指正。 謝謝!
高中數(shù)學(xué)說課稿 篇3
各位評(píng)委老師你們好,我是第?號(hào)選手。我今天說課的題目是《 》,我將從教材分析,教法,學(xué)法,教學(xué)程序,等幾個(gè)方面進(jìn)行我的說課。
一,教材分析
這部分我主要從3各方面闡述
1, 教材的地位和作用
《 》是北師大版必修?第?章第?節(jié)的內(nèi)容,在此之前,同學(xué)們已經(jīng)學(xué)習(xí)了、,這些對(duì)本節(jié)課的學(xué)習(xí)有一定的鋪墊作用,同是學(xué)好本節(jié)的內(nèi)容不僅加深前面所學(xué)習(xí)的知識(shí),而且為后面我們將要學(xué)習(xí)的?知識(shí)打好基礎(chǔ),?所以說本節(jié)課的學(xué)習(xí)在整個(gè)高中數(shù)學(xué)學(xué)習(xí)過程中占有重要地位!
2.根據(jù)教學(xué)大綱的規(guī)定,教學(xué)內(nèi)容的要求,教學(xué)對(duì)象的實(shí)情我確定了如下3維教學(xué)目標(biāo)(i)知識(shí)目標(biāo):
II能力目標(biāo);初步培養(yǎng)學(xué)生歸納,抽象,概括的思維能力。
訓(xùn)練學(xué)生認(rèn)識(shí)問題,分析問題,解決問題的能力
III情感目標(biāo);通過學(xué)生的'探索,史學(xué)生體會(huì)數(shù)學(xué)就在我們身邊,讓學(xué)生發(fā)現(xiàn)生活的數(shù)學(xué),培養(yǎng)不斷超越的創(chuàng)新品質(zhì),提高數(shù)學(xué)素養(yǎng)。
3, 結(jié)合以上分析以及高一學(xué)生的人知水平我確定啦本節(jié)課的重難點(diǎn)
教學(xué)重點(diǎn):
教學(xué)難點(diǎn);
二,教法
教學(xué)方法是完成教學(xué)任務(wù)的手段,恰當(dāng)?shù)膶W(xué)者教學(xué)方法至關(guān)重要,根據(jù)本節(jié)課的教學(xué)內(nèi)容,考慮到高一學(xué)生已經(jīng)初步具有一定的探索能力,并喜歡挑戰(zhàn)問題的實(shí)際情況,為啦更有效的突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的知道思想。我主要采用 問題探究法 引導(dǎo)發(fā)現(xiàn)發(fā),案例教學(xué)法,講授法,在教學(xué)過程中精心設(shè)計(jì)帶有啟發(fā)性和思考性的問題,滿足學(xué)生探索的欲望,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,激發(fā)來自學(xué)生主體最有利的動(dòng)力。并運(yùn)用多媒體課件的形式,更形象直觀,提高教學(xué)效果的同時(shí)加大啦課堂密度!
學(xué)法
根據(jù)學(xué)生的年齡特征,運(yùn)用訊息漸進(jìn),逐步升入,理論聯(lián)系實(shí)際的規(guī)律,讓學(xué)生從問題中質(zhì)疑,嘗試,歸納,總結(jié),運(yùn)用。培養(yǎng)學(xué)生發(fā)現(xiàn)問題,研究問題,分析問題的能力。自主參與知識(shí)的發(fā)生,發(fā)展,形成過程,完成從感性認(rèn)識(shí) 到理性思維的質(zhì)的飛躍,史學(xué)生在知識(shí)和能力方面都有所提高。
三,教學(xué)程序
1, 創(chuàng)設(shè)情境,提出問題
讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),學(xué)生試著利用以前的知識(shí)經(jīng)驗(yàn),同化索引出當(dāng)前學(xué)習(xí)的新知識(shí),激發(fā)學(xué)習(xí)的興趣和動(dòng)機(jī)。
2, 引導(dǎo)探究,直奔主題。(揭示概念)
參用小組合作的方式,各小組派代表發(fā)表成果,教師作為教學(xué)的引導(dǎo)者,給予肯定的評(píng)價(jià),并給出一定的指導(dǎo),最后師生共同得出??!教師引導(dǎo)學(xué)生進(jìn)一步學(xué)習(xí)。整個(gè)過程充分突出學(xué)生的主體地位,培養(yǎng)學(xué)生合作探究的能力,激發(fā)興趣,更讓學(xué)生在思考學(xué)術(shù)問題以及解決數(shù)學(xué)問題的思想方法上有更深的交流。
3, 自我嘗試,初步應(yīng)用
在講解是,不僅在于怎樣接,更在于為什么這樣解,及時(shí)引導(dǎo)學(xué)生探究運(yùn)用知識(shí),解決問題的方法,及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于培養(yǎng)學(xué)生的思維能力。 4 .當(dāng)堂訓(xùn)練,鞏固深化(反饋矯正)
通過學(xué)生的主體參與,讓學(xué)生鞏固所學(xué)的知識(shí),實(shí)現(xiàn)對(duì)知識(shí)再認(rèn)識(shí)的以及在數(shù)學(xué)解題思想方法層面上進(jìn)一步升華
5,歸納小結(jié),回顧反思
從知識(shí),方法,經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。讓學(xué)生思考本節(jié)課學(xué)到啦那些知識(shí),還有那些疑問。本節(jié)課最大的體驗(yàn)。本節(jié)課你學(xué)會(huì)那些技能。
知識(shí)性的內(nèi)容小結(jié),可以把課堂教學(xué)傳授的知識(shí)盡快轉(zhuǎn)化為學(xué)生的素養(yǎng),數(shù)學(xué)思想發(fā)放的小結(jié),可以使學(xué)生更深刻地理解數(shù)學(xué)思想發(fā)放在解題中的地位和作用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。
,6,變式延伸,布置作業(yè)
必做題,對(duì)本屆課學(xué)生知識(shí)水平的反饋。選作題,對(duì)本節(jié)課知識(shí)內(nèi)容的延伸。使不同層次學(xué)生都可以收獲成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,讓每個(gè)學(xué)生在原有的基礎(chǔ)上有所發(fā)展。做到人人學(xué)數(shù)學(xué),人人學(xué)不同的數(shù)學(xué)。
7板書設(shè)計(jì)
力圖簡潔,形象,直觀,概括以便學(xué)生易于掌握。
四,教學(xué)評(píng)價(jià)
學(xué)生學(xué)習(xí)結(jié)果評(píng)價(jià)當(dāng)然重要,但是學(xué)習(xí)過程的評(píng)價(jià)更加重要。本節(jié)課中高度重視學(xué)生學(xué)習(xí)過程中的參與度,自信心,團(tuán)隊(duì)精神,合作意識(shí),獨(dú)立思考習(xí)慣的養(yǎng)成。數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感,,學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計(jì)可以讓更多學(xué)生主動(dòng)參與,師生對(duì)話可以實(shí)現(xiàn)師生合作,適度的研討可以駐京生生交流,知識(shí)的生成和問題的解決可以讓學(xué)生感受到成功的喜悅?b密的思考可以培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣,讓學(xué)生在教室評(píng)價(jià),學(xué)生評(píng)價(jià)以及自我評(píng)價(jià)的過程中體驗(yàn)知識(shí)的積累,探索能力的長進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ),
以上就是我的說課內(nèi)容。不當(dāng)之處,希望各位老師給予指正。謝謝各位評(píng)委老師!你們幸苦啦!
高中數(shù)學(xué)說課稿 篇4
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2.1.3函數(shù)簡單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì).通過對(duì)本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會(huì)函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識(shí)解決一些簡單的實(shí)際問題.通過上述活動(dòng),加深對(duì)函數(shù)本質(zhì)的認(rèn)識(shí).函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識(shí)之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.
3、教學(xué)目標(biāo)
(1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
。2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.
(3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì).
4、重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;
。2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.
教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識(shí)形成;
。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主體參與的積極性.
2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個(gè)完成對(duì)各個(gè)難點(diǎn)的突破,以獲得各類問題的解決.
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評(píng)和規(guī)范書寫等方面,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚⒊晒Φ赝瓿蓵姹磉_(dá).
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.
在學(xué)法上:
1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.
2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的一個(gè)飛躍.
高中數(shù)學(xué)說課稿 篇5
一、教學(xué)背景分析
1、教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3、教學(xué)目標(biāo)
(1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;
、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;
、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題。
(2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;
③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);
、谠隗w驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4、教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
(2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
2、學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。
下面我就對(duì)具體的教學(xué)過程和設(shè)計(jì)加以說明:
三、教學(xué)過程與設(shè)計(jì)
整個(gè)教學(xué)過程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?
通過對(duì)這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。
通過對(duì)問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)。
(二)深入探究——獲得新知
問題二 1、根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2、如果圓心在,半徑為時(shí)又如何呢?
這一環(huán)節(jié)我首先讓學(xué)生對(duì)問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。
(三)應(yīng)用舉例——鞏固提高
I、直接應(yīng)用 內(nèi)化新知
問題三 1、寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過點(diǎn),圓心在點(diǎn)。
2、寫出圓的圓心坐標(biāo)和半徑。
我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。
II、靈活應(yīng)用 提升能力
問題四 1、求以點(diǎn)為圓心,并且和直線相切的圓的方程。
2、求過點(diǎn),圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點(diǎn)的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?
我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。
III、實(shí)際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0。01m)。
我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。
(四)反饋訓(xùn)練——形成方法
問題六 1、求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
2、求圓過點(diǎn)的切線方程。
3、求圓過點(diǎn)的切線方程。
接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
(五)小結(jié)反思——拓展引申
1、課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法
、賵A心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:。
、谝阎獔A的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程。
3、激發(fā)新疑
問題七 1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。
以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):
橫向闡述教學(xué)設(shè)計(jì)
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五。這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破。
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維 提升能力 激勵(lì)創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。
以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)說課稿 篇6
一、教材分析
1· 教材的地位和作用
在學(xué)習(xí)這節(jié)課以前,我們已經(jīng)學(xué)習(xí)了振幅變換。本節(jié)知識(shí)是學(xué)習(xí)函數(shù)圖象變換綜合應(yīng)用的基礎(chǔ),在教材地位上顯得十分重要。
y=asin(ωx+φ)圖象變換的學(xué)習(xí)有助于學(xué)生進(jìn)一步理解正弦函數(shù)的圖象和性質(zhì),加深學(xué)生對(duì)函數(shù)圖象變換的理解和認(rèn)識(shí),加深數(shù)形結(jié)合在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用的認(rèn)識(shí)。同時(shí)為相關(guān)學(xué)科的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。
、步滩牡闹攸c(diǎn)和難點(diǎn)
重點(diǎn)是對(duì)周期變換、相位變換規(guī)律的理解和應(yīng)用。
難點(diǎn)是對(duì)周期變換、相位變換先后順序的調(diào)整,對(duì)圖象變換的影響。
、辰滩膬(nèi)容的安排和處理
函數(shù)y=asin(ωx+φ)圖象這部分內(nèi)容計(jì)劃用3課時(shí),本節(jié)是第2課時(shí),主要學(xué)習(xí)周期變換和相位變換,以及兩種變換的綜合應(yīng)用。
二、目的分析
、敝R(shí)目標(biāo)
掌握相位變換、周期變換的變換規(guī)律。
⒉能力目標(biāo)
培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力、歸納能力、分析問題解決問題能力。
⒊德育目標(biāo)
在教學(xué)中努力培養(yǎng)學(xué)生的“由簡單到復(fù)雜、由特殊到一般”的辯證思想,培養(yǎng)學(xué)生的探究能力和協(xié)作學(xué)習(xí)的能力。
、辞楦心繕(biāo)
通過學(xué)數(shù)學(xué),用數(shù)學(xué),進(jìn)而培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣。
三、教具使用
①本課安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺(tái)計(jì)算機(jī),所有的計(jì)算機(jī)由一套多媒體演示控制系統(tǒng)連接,以實(shí)現(xiàn)師生、生生的相互溝通。
、谡n前應(yīng)先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺(tái)學(xué)生電腦。
四、教法、學(xué)法分析
本節(jié)課以“探究——?dú)w納——應(yīng)用”為主線,通過設(shè)置問題情境,引導(dǎo)學(xué)生自主探究,總結(jié)規(guī)律,并能應(yīng)用規(guī)律分析問題、解決問題。
以學(xué)生的自主探究為主要方式,把計(jì)算機(jī)使用的主動(dòng)權(quán)交給學(xué)生,讓學(xué)生主動(dòng)去學(xué)習(xí)新知、探究未知,在活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能數(shù)學(xué)地提出問題、解決問題。
五、教學(xué)過程
教學(xué)過程設(shè)計(jì):
預(yù)備知識(shí)
一、問題探究
、艓熒献魈骄恐芷谧儞Q
、茖W(xué)生自主探究相位變換
二、歸納概括
三、實(shí)踐應(yīng)用
教學(xué)程序
設(shè)計(jì)說明
〖預(yù)備知識(shí)
1我們已經(jīng)學(xué)習(xí)了幾種圖象變換?
2這些變換的規(guī)律是什么?
幫助學(xué)生鞏固、理解和歸納基礎(chǔ)知識(shí),為后面的學(xué)習(xí)作鋪墊。促使學(xué)生學(xué)會(huì)對(duì)知識(shí)的歸納梳理。
〖問題探究
(一)師生合作探究周期變換
(1)自己動(dòng)手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin
x圖象的變換過程,指出變換過程中圖象上每一個(gè)點(diǎn)的坐標(biāo)發(fā)生了什么變化。
(2) 在上述變換過程中,橫坐標(biāo)的伸長和縮短與ω之間存在怎樣的關(guān)系?
(二)學(xué)生自主探究相位變換
(1)我們初中學(xué)過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請(qǐng)動(dòng)手用幾何畫板加以驗(yàn)證。
設(shè)計(jì)這個(gè)問題的主要用意是讓學(xué)生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。
設(shè)計(jì)這個(gè)問題意圖是引導(dǎo)學(xué)生再次認(rèn)真觀察圖象變換的過程,以便總結(jié)周期變換的規(guī)律。
師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎(chǔ)上,由學(xué)生自主探究相位變換規(guī)律,提高學(xué)生的綜合能力。
〖?xì)w納概括
通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?
設(shè)計(jì)這個(gè)環(huán)節(jié)的意圖是通過對(duì)上述變換過程的探究,進(jìn)而引導(dǎo)學(xué)生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。
〖實(shí)踐應(yīng)用
。ㄒ唬⿷(yīng)用舉例
(1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內(nèi)的簡圖。
(2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換
(3)請(qǐng)動(dòng)手驗(yàn)證上述方法,把幾何畫板所得圖象與用五點(diǎn)法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯(cuò)誤的。
(4)歸納總結(jié)
從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應(yīng)該是_____.
(二)分層訓(xùn)練
a組題(基礎(chǔ)題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c組題(拓展題)
①如何完成下列圖象的變換:
y=sinx →y=sin(3x+1)
、谖覀冎,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請(qǐng)通過實(shí)例加以驗(yàn)證。
讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗(yàn)證變換方法是否正確。
給出這個(gè)問題的用意是開拓學(xué)生的思維,讓學(xué)生從多角度思考問題。
這個(gè)步驟主要目的是培養(yǎng)學(xué)生的探究能力和動(dòng)手能力。
這個(gè)問題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過問題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應(yīng)特別關(guān)注x的變化量。
a組題重在基礎(chǔ)知識(shí)的掌握,
由基礎(chǔ)較薄弱的同學(xué)完成。
b組比a組增加了第③小題,
重在對(duì)兩種變換的綜合應(yīng)用。
c組除了考查知識(shí)的綜合應(yīng)用,
還要求學(xué)生對(duì)新問題進(jìn)行探究,
有較大難度,適合基礎(chǔ)較好的
同學(xué)完成。
作業(yè):
。1)必做題
。2)選做題
作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
六、評(píng)價(jià)分析
在本節(jié)的教與學(xué)活動(dòng)中,始終體現(xiàn)以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進(jìn)行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動(dòng)手能力的培養(yǎng),重視問題探究意識(shí)和能力的培養(yǎng)。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現(xiàn)因材施教原則。
調(diào)節(jié)與反饋:
、膨(yàn)證兩種變換的綜合時(shí),可能會(huì)出現(xiàn)有些學(xué)生無法觀察到兩種變換的區(qū)別這種情況,此時(shí),教師除了加以引導(dǎo)外,還需通過教師演示和詳細(xì)講解加以解決。
、平虒W(xué)中可能出現(xiàn)個(gè)別學(xué)生無法正確操作課件的情況,這種情況下一定要強(qiáng)調(diào)學(xué)生的協(xié)作意識(shí)。
附:板書設(shè)計(jì)
【關(guān)于高中數(shù)學(xué)說課稿模板匯總6篇】相關(guān)文章:
關(guān)于高中數(shù)學(xué)說課稿模板匯總七篇08-08
關(guān)于高中數(shù)學(xué)說課稿模板六篇06-22
精選高中數(shù)學(xué)說課稿模板匯總9篇07-29
精選高中數(shù)學(xué)說課稿模板匯總5篇07-28