高中數(shù)學(xué)《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》優(yōu)秀說課稿模板
一、 教材分析
1.本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個知識點緊密聯(lián)系起來,是全章重點之一。
2學(xué)生情況分析:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長度和夾角這兩個概念來表示的,應(yīng)用起來不太方便,如何用坐標(biāo)這一最基本、最常用的工具來表示數(shù)量積,使之應(yīng)用更方便,就是擺在學(xué)生面前的一個亟待解決的問題。因此,本節(jié)內(nèi)容的學(xué)習(xí)是學(xué)生認(rèn)知發(fā)展和知識構(gòu)建的一個合情、合理的“生長點”。所以,本節(jié)課采取以學(xué)生自主完成為主,教師查漏補(bǔ)缺的教學(xué)方法。因此結(jié)合中學(xué)生的認(rèn)知結(jié)構(gòu)特點和學(xué)生實際。我將本節(jié)教學(xué)目標(biāo)確定為:1、理解掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行數(shù)量積的運(yùn)算。理解掌握向量的模、夾角等公式。能根據(jù)公式解決兩個向量的夾角、垂直等問題2、經(jīng)歷根據(jù)平面向量數(shù)量積的意義探究其坐標(biāo)表示的過程,體驗在此基礎(chǔ)上探究發(fā)現(xiàn)向量的模、夾角等重要的度量公式的成功樂趣,培養(yǎng)學(xué)生的探究能力、創(chuàng)新精神。
教學(xué)重點
平面向量數(shù)量積的坐標(biāo)表示及應(yīng)用
教學(xué)難點
探究發(fā)現(xiàn)公式
二、 教學(xué)方法和手段
1教學(xué)方法:結(jié)合本節(jié)教材淺顯易懂,又有前面平面向量的數(shù)量積和向量的'坐標(biāo)表示等知識作鋪墊的內(nèi)容特點,兼顧高一學(xué)生已具備一定的數(shù)學(xué)思維能力和處理向量問題的方法的現(xiàn)狀,我主要采用“誘思探究教學(xué)法”,其核心是“誘導(dǎo)思維,探索研究”,其教學(xué)思想是“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的原則,為此,我通過精心設(shè)置的一個個問題,激發(fā)學(xué)生的求知欲,積極的鼓勵學(xué)生的參與,給學(xué)生獨立思考的空間,鼓勵學(xué)生自主探索,最終在教師的指導(dǎo)下去探索發(fā)現(xiàn)問題,解決問題。在教學(xué)中,我適時的對學(xué)生學(xué)習(xí)過程給予評價,適當(dāng)?shù)脑u價,可以培養(yǎng)學(xué)生的自信心,合作交流的意識,更進(jìn)一步地激發(fā)了學(xué)生的學(xué)習(xí)興趣,讓他們體驗成功的喜悅。
2教學(xué)手段:利用多媒體輔助教學(xué),可以加大一堂課的信息容量,極大提高學(xué)生的學(xué)習(xí)興趣。
三、 學(xué)法指導(dǎo)
改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。獨立思考,自主探索,動手實踐,合作交流等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的“再創(chuàng)造”的過程。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨立思考,積極探索的習(xí)慣。為了實現(xiàn)這一目標(biāo),本節(jié)教學(xué)讓學(xué)生主動參與,讓學(xué)生動手,動口、動腦。通過思考、計算、歸納、推理,鼓勵學(xué)生多向思維,積極活動,勇于探索。具體體現(xiàn)在:1、通過提出問題,把問題的求解與探究貫穿整堂課,使學(xué)生在自主探究中發(fā)現(xiàn)了結(jié)論,推廣了命題,使學(xué)生感到成果是自己得到的,增強(qiáng)了成就感,培養(yǎng)了學(xué)生學(xué)好數(shù)學(xué)的信心和良好的學(xué)習(xí)動機(jī)。2、通過數(shù)與形的充分挖掘,通過對向量平行與垂直條件的坐標(biāo)表示的類比,培養(yǎng)了學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想,教給了學(xué)生類比聯(lián)想的記憶方法。
四、教學(xué)程序
本節(jié)課分為復(fù)習(xí)回顧、定理推導(dǎo)、引申推廣、例題講析、練習(xí)與小結(jié)五部分。
復(fù)習(xí)回顧部分通過兩個問題,復(fù)習(xí)了與本節(jié)內(nèi)容相關(guān)的數(shù)量積概念,為本節(jié)內(nèi)容的學(xué)習(xí)作了必要的鋪墊。
定理推導(dǎo)部分通過設(shè)問,引出尋求向量的數(shù)量積的坐標(biāo)表示的必要性,引入課題,并引導(dǎo)學(xué)生應(yīng)用前述知識共同推導(dǎo)出數(shù)量積的坐標(biāo)表示。
引申推廣部分,讓學(xué)生自主推導(dǎo)出向量的長度公式,向量垂直條件的坐標(biāo)表示、夾角公式等三個結(jié)論,強(qiáng)化了學(xué)生的動手能力和自主探究能力。
例題講析,通過四道緊扣教材的例題的精講,突出了結(jié)論的應(yīng)用,也起到了示范作用。
練習(xí)及小結(jié):通過練習(xí)題驗收教學(xué)效果,突出訓(xùn)練主線,小結(jié)部分畫龍點睛,強(qiáng)調(diào)本節(jié)重點。再結(jié)合課后作業(yè),進(jìn)一步實現(xiàn)本節(jié)課的教學(xué)目的。同時小結(jié)也體現(xiàn)主體性,由教師提出問題學(xué)生總結(jié)得出。
【高中數(shù)學(xué)《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》優(yōu)秀說課稿模板】相關(guān)文章:
高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14
高中數(shù)學(xué)《平面動點的軌跡》說課稿范文01-29
最新高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14
關(guān)于高中平面向量的教學(xué)體會論文07-14
高中數(shù)學(xué)《簡單隨機(jī)抽樣》優(yōu)秀說課稿模板08-10