久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

中考試題賞析論文

時間:2023-02-17 06:02:28 論文范文 我要投稿
  • 相關推薦

中考試題賞析論文范文

  1、與拼圖相結(jié)合,注重考察學生的觀察能力.

中考試題賞析論文范文

  例1(湖南湘潭市)如圖1,將一副七巧板拼成一只小貓,則下圖中∠AOB=.

  解析觀察發(fā)現(xiàn)這里正方形內(nèi)的七巧板有5塊是等腰直角三角形,1塊正方形和1塊銳角為45°的平行四邊形。利用數(shù)字標出組成正方形和小貓的七巧板之間的對應關系,如圖2所示,∠AOB內(nèi)部的兩塊是等腰直角三角形,則∠AOB=90°.

  例2(湖北荊門市)用四個全等的矩形和一個小正方形拼成如圖3所示的大正方形,已知大正方形的面積是144,小正方形的面積是4,若用x,y表示矩形的長和寬(x>y),則下列關系式中不正確的是()

  (A)x+y=12.(B)x-y=2.(C)xy=35.(D)x+y=144.

  解析觀察拼圖3可發(fā)現(xiàn):大正方形的邊長是矩形的長和寬之和;小正方形的邊長是矩形的長和寬之差.由大正方形的面積是144可知其邊長是12,即x+y=12①;由小正方形的邊長是4可知其邊長是2,即x-y=2②,因此選項A和B的關系式均正確.解①、②得x=7,y=5.因此:xy=35,x+y=74.所以答案為選擇D.

  點評例1、例2的拼圖試題在教材中是具有相應原型的,這里改編成中考試題可謂老樹發(fā)新枝。事實上學生若能認真觀察圖形的本身特點進而找到相應數(shù)量關系,準確解答并不是件難事。

  2、與多邊形、圓相結(jié)合,注重考察學生對幾何性質(zhì)的綜合運用.

  例3(陜西省)如圖4,梯形ABCD中,AB∥CD,∠ADC+∠BCD=90°,且DC=2AB,分別以DA、AB、BC為邊向梯形外作正方形,其面積分別為S1、S2、S3,則S1、S2、S3之間的關系是.

  解析此題中所求三個正方形的面積S1、S2、S3之間的關系實質(zhì)是求梯形ABCD的兩個腰長及上底邊邊長

  三者的平方關系.可利用梯形的高來建立橋梁

  作用.如圖5,分別過點

  A、B做AE⊥DC,BF⊥DC,

  垂足分別為E、F.設

  梯形ABCD的高為h,

  AB=a,DE=x,則DC=2a,FC=a-x.由于∠ADC+∠BCD=90°,可證得△AED∽△CFB,有h2=ax-x.S1=AD2=h2+x2=ax,S2=a2,S3=BC2=h2+(a-x)2=a2-ax.因此:S1+S3=S2.

  例4(江蘇南通市)在一次數(shù)學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側(cè)面時,圓恰好是該圓錐的底面.他們首先設計了如圖6所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調(diào)整了扇形和圓的半徑,設計了如圖7所示的方案二.(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)

 。1)請說明方案一不可行的理由;

 。2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由.

  解析(1)因為扇形ABC的弧長=×16×2π=8π,因此圓的半徑應為4cm.由于所給正方形紙片的對角線長為cm,而制作這樣的圓錐實際需要正方形紙片的對角線長為cm,由于,所以方案一不可行.

  (2)設圓錐底面圓的半徑為r,圓錐的母線長為R,則①,②,由①②,可解得,.故所求圓錐的母線長為cm,底面圓的半徑為cm.

  點評將正方形與多邊形、圓結(jié)合是中考中出現(xiàn)頻率較高的題目。此類題目涉及知識點較多,跨度較大,需要學生具有較為扎實的基本功,具有綜合運用相關數(shù)學知識的能力。

  3與“動點問題”相結(jié)合,注重考察學生對不變因素的探究能力.

  例5(湖北武漢市)正方形ABCD中,點O是對角線AC的中點,P是對角線AC上一動點,過點P作PF⊥CD于點F。如圖8,當點P與點O重合時,顯然有DF=CF.

  (1)如圖9,若點P在線段AO上(不與點A、O重合),PE⊥PB且PE交CD于點E.

  ①求證:DF=EF;

  ②寫出線段PC、PA、CE之間的一個等量關系,并證明你的結(jié)論;

  (2)若點P在線段OC上(不與點O、C重合),PE⊥PB且PE交直線CD于點E。請完成圖10并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫出相應的結(jié)論(所寫結(jié)論均不必證明)

  解析(1)①如圖11過點P做PH⊥BC,垂足為點H,連接PD.此時四邊形PFCH為正方形.容易證出△APB≌△APD,推得∠BPC=∠DPC,進一步可得∠BPH=∠DPF;由∠BPH+∠HPE=90°,∠EPF+∠HPE=90°,得∠BPH=∠EPF.因為PE⊥DC,可證得DF=FE.

 、谟蒃F+CE=PC得:DF=EF=PC-EC.因為PF∥AD,有,將DF=PC-EC代入得:PC=PA+CE.

  (2)連接PB、PD,做PF⊥DC,PH⊥BC,垂足分別為F、H,在DC延長線上取一點E,使得PE⊥PB.此時有結(jié)論①DF=EF成立.而結(jié)論②不成立,PC、PA、EC存在PA=PC+EC關系.證明與②類似,略.

  點評動點問題是中考熱點問題之一,它要求學生善于抓住運動變化的規(guī)律性和不變因素,把握運動與靜止的辨證關系.例5中,無論動點P在線段AC上如何運動,∠BPE是直角以及四邊形PFCH為正方形是不變的.

  4與對稱、旋轉(zhuǎn)相結(jié)合,注重考察學生變換的數(shù)學思想.

  例6(重慶市)如圖13,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、AC于點E、G,.連接GF.下列結(jié)論:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG.其中正確結(jié)論的序號是.

  解析由題意可知△AED和△FED關于ED所在的直線對稱,有AE=EF,AG=GF,∠ADE=∠FDE=∠ADB=22.5°.則∠AGD=180°-∠ADE-∠DAG=112.5°.由于易求得∠AGE=∠AEG=67.5°,則AE=AG.因而,AE=EF=FG=AG,四邊形AEFG是菱形.設AE=k,容易證得△EFB和△OGF均是等腰直角三角形,則EB=k,OG=k.因此EB=2OG.所以正確的結(jié)論是①、④、⑤,其余結(jié)論顯然不成立。

  例7(黑龍江齊齊哈爾市)已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點M,N.當∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖14),易證BM+DN=MN.

 。1)當∠MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖15),線段BM,ND和MN之間有怎樣的數(shù)量關系?寫出猜想,并加以證明.

 。2)當∠MAN繞點A旋轉(zhuǎn)到如圖16的位置時,線段BM,ND和MN之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.

  解析(1)如圖17,把△AND繞點A順時針90°,得到△ABE,則有DN=BE,∠EAM=∠MAN=45°.進而可證得:△AEM≌△AMN.所以MN=ME=MB+EB=MB+DN.

  (2)線段BM,ND和MN之間存在MN=DN-MB.

  點評平移、翻折和旋轉(zhuǎn)是初中幾何重要的三種變換方式,變換之后的幾何圖形與原圖形對應的邊、角均相等.巧妙的運用變換的基本性質(zhì)或構(gòu)造變換圖形,均可以使題目的解答簡易而順暢.

  5與函數(shù)圖象相結(jié)合,注重考察學生的數(shù)形結(jié)合思想.

  例8(湖南長沙市)在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖18)按一定方向運動。圖19是P點運動的路程s(個單位)與運動時間(秒)之間的函數(shù)圖象,圖20是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.

 。1)s與t之間的函數(shù)關系式是:;

 。2)與圖20相對應的P點的運動路徑是:;P點出發(fā)秒首次到達點B;

 。3)寫出當3≤s≤8時,y與s之間的函數(shù)關系式,并在圖16中補全函數(shù)圖象.

  解析(1)圖19是正比例函數(shù)圖象,易求得s與t之間的函數(shù)關系式為:S=(t≥0)

 。2)從圖20的函數(shù)圖象可以看出,動點P的縱y在運動時隨時間t的增大開始時逐漸增大,而后又不變,最后又減小至0,說明P點在正方形的運動路徑是:M→D→A→N.由圖18、19可知,P點從點M運動到點B的路程為5,速度為0.5,所以首次到達點B需要時間為10秒.

  (3)結(jié)合圖18和圖20,分析可得,第1秒之前,動點P從點M向點D處運動;第1至3秒時,動點P從點D向點A處運動;第3至5秒時,動點P從點A向點B處運動;第5至7秒時,動點P從點B向點C處運動;第7至8秒時,動點P從點C向點M處運動.時間段不同,函數(shù)關系不同,因此列分段函數(shù)為:當3≤s<5,y=4-s;當5≤s<7,y=-1;當7≤s≤8,y=s-8.補全的函數(shù)圖象如圖21.

  點評函數(shù)圖象問題是數(shù)形結(jié)合的數(shù)學思想的重要體現(xiàn),在中考試卷中也往往作為具有一定區(qū)分度的題目出現(xiàn)。例8是一個分段函數(shù)問題,其關鍵是依據(jù)函數(shù)圖象弄清楚點P在正方形ABCD上的哪一段運動,坐標與時間、路程如何變化.

  6與實際問題相結(jié)合,注重考察學生構(gòu)建數(shù)學模型的能力.

  例9(湖北荊門市)某人定制了一批地磚,每塊地磚(如圖21所示)是邊長為0.4米的正方形ABCD,點E、F分別在邊BC和CD上,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價格依次為30元、20元、10元,若將此種地磚按圖22所示的形式鋪設,且能使中間的陰影部分組成四邊形EFGH.

  (1)判斷圖22中四邊形EFGH是何形狀,并說明理由;

  (2)E、F在什么位置時,定制這批地磚所需的材料費用最?

  解析:(1)四邊形EFGH是正方形.圖22可以看作是由四塊圖21所示地磚繞C點按順時針方向旋轉(zhuǎn)90°后得到的,故CE=CF=CG=CH.因此△CEF是等腰直角三角形.所以因此四邊形EFGH是正方形.

  (2)設CE=x米,則BE=(0.4-x)米,每塊地磚的費用為y,有:y=x×30+×0.4×(0.4-x)×20+[0.16-x-×0.4×(0.4-x)]×10=10(x-0.2x+0.24)=10[(x-0.1)2+0.23](0<x<0.4).所以當x=0.1米時,y有最小值,即費用為最省,此時CE=CF=0.1米.

  點評實際應用問題側(cè)重考察學生的分析、理解問題的能力,它要求學生準確把握題目內(nèi)容和要求的基礎上,利用已有的數(shù)學知識,建立起方程、函數(shù)等數(shù)學模型,具有一定的難度.例9中的問題(2)就是建立二次函數(shù)關系式的數(shù)學模型,通過求函數(shù)最小值的方法求得答案.

【中考試題賞析論文】相關文章:

關于教育論文的論文09-29

關于教育論文的論文8篇11-06

藥學的論文11-12

論文致謝04-11

什么是論文大綱?04-26

論文標準格式04-12

論文排版格式04-19

論文致謝語精選05-03

綜述性論文04-14

關于教育論文11-09