久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

最新2015年考研數(shù)學(xué)三考試大綱

發(fā)布時(shí)間:2017-05-27 編輯:bin

  考研數(shù)學(xué)三大綱包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)。均要求理解概念,掌握表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系。

  1、試題結(jié)構(gòu)

  考試形式

  1、試卷滿分及考試時(shí)間

  試卷滿分為150分,考試時(shí)間為180分鐘.

  2、答題方式

  答題方式為閉卷、筆試.

  試卷內(nèi)容結(jié)構(gòu)

  微積分 56%

  線性代數(shù) 22%

  概率論與數(shù)理統(tǒng)計(jì) 22%

  試卷題型結(jié)構(gòu)

  單項(xiàng)選擇題選題8小題,每題4分,共32分

  填空題 6小題,每題4分,共24分

  解答題(包括證明題) 9小題,共94分

  2、考試內(nèi)容

  微積分

  函數(shù)、極限、連續(xù)

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系.

  2.了解函數(shù)的有界性.單調(diào)性.周期性和奇偶性.

  3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

  5.了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念.

  6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法.

  7.理解無窮小的概念和基本性質(zhì).掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關(guān)系.

  8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型.

  9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理.介值定理),并會(huì)應(yīng)用這些性質(zhì).

  一元函數(shù)微分學(xué)

  考試要求

  1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程.

  2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式.導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù) 會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù).

  3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù).

  4.了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分.

  5.理解羅爾(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個(gè)定理的簡(jiǎn)單應(yīng)用.

  6.會(huì)用洛必達(dá)法則求極限.

  7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用.

  8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù).當(dāng) 時(shí), 的圖形是凹的;當(dāng) 時(shí), 的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線.

  9.會(huì)描述簡(jiǎn)單函數(shù)的圖形.

  一元函數(shù)積分學(xué)

  考試要求

  1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法和分部積分法.

  2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.

  3.會(huì)利用定積分計(jì)算平面圖形的面積.旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問題.

  4.了解反常積分的概念,會(huì)計(jì)算反常積分.

  多元函數(shù)微積分學(xué)

  考試要求

  1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.

  2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).

  3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).

  4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決簡(jiǎn)單的應(yīng)用問題.

  5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo).極坐標(biāo)).了解無界區(qū)域上較簡(jiǎn)單的反常二重積分并會(huì)計(jì)算.

  無窮級(jí)數(shù)

  考試要求

  1.了解級(jí)數(shù)的收斂與發(fā)散.收斂級(jí)數(shù)的和的概念.

  2.了解級(jí)數(shù)的基本性質(zhì)和級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法.

  3.了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系,了解交錯(cuò)級(jí)數(shù)的萊布尼茨判別法.

  4.會(huì)求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域.

  5.了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡(jiǎn)單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù).

  6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麥克勞林(Maclaurin)展開式.

  常微分方程與差分方程

  考試要求

  1.了解微分方程及其階、解、通解、初始條件和特解等概念.

  2.掌握變量可分離的微分方程.齊次微分方程和一階線性微分方程的求解方法.

  3.會(huì)解二階常系數(shù)齊次線性微分方程.

  4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式.指數(shù)函數(shù).正弦函數(shù).余弦函數(shù)的二階常系數(shù)非齊次線性微分方程.

  5.了解差分與差分方程及其通解與特解等概念.

  6.了解一階常系數(shù)線性差分方程的求解方法.

  7.會(huì)用微分方程求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問題.

  線性代數(shù)

  行列式

  考試內(nèi)容:行列式的概念和基本性質(zhì) 行列式按行(列)展開定理

  考試要求

  1.了解行列式的概念,掌握行列式的性質(zhì).

  2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式.

  矩陣

最新推薦
熱門推薦