高等數學從本質上講只有三種運算:極限,導數與積分。所以,今天就來說下怎么復習定積分的相關知識。
一、明晰知識體系
定積分這章非常重要,考試考查的內容多而廣。這章包括:定積分的定義,性質;微積分基本定理;反常積分;定積分的應用。這四個部分各有側重點。其中定積分的定義是重點;要理解微積分基本定理;要掌握定積分在幾何和物理上面的應用。至于反常積分大家了解就行了。
二、深刻理解知識點
在掌握了知識體系之后,自然就需要明確具體的重點知識點了。首先是定積分的定義及性質。大家需要深刻理解定積分的定義。我覺得同學們不僅要會用自己的話來表述定義,而且要一步一步的寫出精髓。比如說從定義中體現(xiàn)的思想:微元法。同學們要理解分割,近似,求和,取極限這四個步驟。同時要知道其幾何意義及定義中需要注意的方面。對定積分定義的考察在每年考研中是必考內容。所以希望引起大家的足夠重視。至于性質,大家關鍵也在于理解。特別是區(qū)間可加性;比較定理;積分中值定理。對這三個性質大家一定要知道是怎么來的?佳兄杏嘘P積分的證明題多多少少會用到這三個性質。所以大家只有理解了才懂得在什么時候用。然后是微積分基本定理。這個知識點非常重要。因為它定義了一種新的函數:積分上限函數。而且在一定的條件下,它的導數就是f(x)。所以我們擴展了函數類型。那么導數應用中的切線與法線;單調性;極值;凹凸性等應用就可以與積分上限函數聯(lián)系了。同時提出了牛頓-萊布尼茨公式,使得我們可以用不定積分來計算定積分。希望同學們要掌握牛頓-萊布尼茨公式的證明過程。補充說一點:求定積分常用的方法是基本積分公式;換元積分法(湊微分法和換元積分法);分部積分法。其中換元積分法和分部積分法是重點。大家要理解換元積分法的思想。即我們通過復合函數求導公式推出了湊微分法;通過三角代換,根式代換等提出了換元積分法。而我們通過相乘函數的導數公式推出了分部積分法。所以大家只有知道這些方法是怎么來的才能更好的使用這些方法。接著大家要注意變限積分求導了,最好請大家自己證明下。第三個要說的是反常積分。對這一部分,同學們了解基本定義,會用定積分判斷是否收斂就夠了。最后,是定積分的應用。其實就是微元法在幾何以及物理上面的應用。同樣的,同學們要知道數學一,數學二,數學三的區(qū)別。在幾何上,數學三只用掌握用定積分求面積和簡單幾何體的體積。而數學一和數學二還要求掌握用定積分求曲線弧長,旋轉曲面面積。在物理應用方面,數學一和數學二主要掌握用定積分求變力沿直線做功,抽水做功,液太靜壓力和質心問題。但核心是,同學們一定要掌握微元法的思想。
三、適量習題
在大家理解了重點知識以及明確了考試重點后就需要做題鞏固了。在這里,我堅決反對題海戰(zhàn)術。因為大家的時間有限并且題海戰(zhàn)術在沒理解知識點之前是沒用的。那么針對定積分這章,大家先針對我說的重點知識進行做題鞏固,關鍵是每做一個題就要理解,要反思,要多想想考察了知識點那些方面。然后對次重點知識輔助做一些題,了解就夠了。
總之,希望大家經過這三個步驟能夠學習好定積分,為以后的高等數學的復習打好基礎。祝大家考研順利,馬到成功!