考研數(shù)學(xué)中概率論與高數(shù)相比,其解題思路相對比較固定,沒有高數(shù)那么靈活多樣化,考生在平時做題的時候如果多做分析與總結(jié),歸納出各個題型所要考察的點與相應(yīng)的解題方法,就可很快地得出正確答案。
1、如果要求的是若干事件中“至少”有一個發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當事件組相互獨立時,用對立事件的概率公式。
2、若給出的試驗可分解成(0-1)的n重獨立重復(fù)試驗,則馬上聯(lián)想到Bernoulli試驗,及其概率計算公式
3、若某事件是伴隨著一個完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計算。關(guān)鍵:尋找完備事件組。
4、若題設(shè)中給出隨機變量X~N則馬上聯(lián)想到標準化~N(0,1)來處理有關(guān)問題。
5、求二維隨機變量(X,Y)的邊緣分布密度的問題,應(yīng)該馬上聯(lián)想到先畫出使聯(lián)合分布密度的區(qū)域,然后定出X的變化區(qū)間,再在該區(qū)間內(nèi)畫一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而的求法類似。
6、欲求二維隨機變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應(yīng)該馬上聯(lián)想到二重積分的計算,其積分域D是由聯(lián)合密度的平面區(qū)域及滿足Y≥g(X)或(Y≤g(X))的區(qū)域的公共部分。
7、涉及n次試驗?zāi)呈录l(fā)生的次數(shù)X的數(shù)字特征的問題,馬上要聯(lián)想到對X作(0-1)分解。
8、凡求解各概率分布已知的若干個獨立隨機變量組成的系統(tǒng)滿足某種關(guān)系的概率(或已知概率求隨機變量個數(shù))的問題,馬上聯(lián)想到用中心極限定理處理。
9、若為總體X的一組簡單隨機樣本,則凡是涉及到統(tǒng)計量的分布問題,一般聯(lián)想到用分布,t分布和F分布的定義進行討論。
以上內(nèi)容是中公考研為同學(xué)們歸納的一些概率論的解題思路,大家在復(fù)習過程中也要多做練習,但不是機械地做題,而是要在解題方法和思路上勤于總結(jié),前提是掌握了概率論的基礎(chǔ)知識,基礎(chǔ)加上策略就能做到以不變應(yīng)萬變。