相信大家已經(jīng)把高數(shù)的復(fù)習已經(jīng)結(jié)束,開啟概率和線代的復(fù)習,不知道對自己高數(shù)的復(fù)習是否滿意,是否達到了我們的“三基本”呢?接下來,小編和大家梳理一下我們做過的極限。
說到極限應(yīng)該是我們?nèi)笥嬎阒械牡谝淮笥嬎,每?a href='http://m.mypeppercompany.com/kaoyan/' target='_blank'>考研真題必出,無論是數(shù)一數(shù)二數(shù)三還是經(jīng)濟類數(shù)學(xué),可以出選擇題也可以出填空題,更可以出解答 題,題目類型不同,分值也不同,4分或者10分,極限的思想也就更是重要之重了,原因就是后來所有的概念都是以極限的形式給出的。下面,我們就看看極限在 基礎(chǔ)階段到底應(yīng)該掌握到什么程度。
第一,極限的定義。理解數(shù)列極限和函數(shù)極限的定義,最好記住其定義。
第二,極限的性質(zhì)。唯一性,有界性,保號性和保不等式性要理解,重點理解保號性和保不等式性,在考研真題里面經(jīng)?疾,而性質(zhì)的本身并不難理 解,關(guān)鍵是在做題目的時候怎么能想到,所以同學(xué)們在做題目的時候可以看看什么情況下利用了極限的保號性,例如:題目中有一點的導(dǎo)數(shù)大于零或者小于零,或者 給定義數(shù)值,可以根據(jù)這個數(shù)值大于零或小于零,像這樣的情況,就可以寫出這一點的導(dǎo)數(shù)定義,利用極限的保號性,得出相應(yīng)的結(jié)論,切記要根據(jù)題目要求來判斷 是否需要,但首先要有這樣的思路,希望同學(xué)們在做題時多去總結(jié)。
第三,極限的計算。這一部分是重中之重,這也是三大計算中的第一大計算,每年必考的題目,所以需要同學(xué)們能夠熟練地掌握并會計算不同類型的極限 計算。首先要知道基本的極限的計算方法,比如:四則運算、等價無窮小替換、洛必達法則、重要極限、單側(cè)極限、夾逼定理、單調(diào)有界收斂定理,除此之外還要泰 勒展開,利用定積分定義求極限。其次還要掌握每一種極限計算的注意事項及拓展,比如:四則運算中掌握“抓大頭”思想(兩個多項式商的極限,是無窮比無窮形 式的,分別抓分子和分母的最高次計算結(jié)果即可),等價無窮小替換中要掌握等價無窮小替換只能在乘除法中直接應(yīng)用,加減法中不能直接應(yīng)用,如需應(yīng)用必須加附 加條件,計算中要掌握基本的等價無窮小替換公式和其推廣及湊形式,進一步說就是第一要熟練掌握基本公式,第二要知道怎么推廣,也就是將等價無窮小替換公式 中的x用f(x)來替換,并且要驗證在x趨于某一變化過程中f(x)會否趨近于零,滿足則可以利用推廣后的等價無窮替換公式,否則不能。
下面給出推廣后公式:f(x)→0,f(x)~sinf(x)~arcsinf(x)~tanf(x)~arctanf(x)~expf(x)-1~ln(f(x)+1),1-cosf(x)~0.5(f(x))2,(1+f(x))a~af(x)。
第三要能將變形的無窮小替換公式轉(zhuǎn)化為標準形式,比如:公式中固定出現(xiàn)的“1”和f(x)為無窮小量。希望同學(xué)們在做題目的時候多加注意,熟能生巧。
極限的第三種方法就是洛必達法則。首先,要想在極限中使用洛必達法則就必須要滿足洛必達法則,說到這里有很多同學(xué)會打個問號,什么法則,不就是上下同時求導(dǎo)?其實不盡然。
洛必達有兩種,無窮比無窮,零比零,分趨近一點和趨近于無窮兩種情況,以趨近于一點來說明法則條件,
條件一:零比零或者無窮比無窮(0/0,∞/∞);條件二:趨近于這一點的去心領(lǐng)域內(nèi)可導(dǎo),且分母導(dǎo)數(shù)不為零;條件三:分子導(dǎo)數(shù)比分母導(dǎo)數(shù)的極限存在或者為無窮,則原極限等于導(dǎo)數(shù)比的極限。
在這里要注意極限計算中使用洛必達法則必須同時滿足這三個條件,缺一不可,特別要注意條件三,導(dǎo)數(shù)比的極限一定是存在或者為無窮,不能把無窮認 為是極限不存在,因為極限不存在還包括極限不存在也不為無窮這種情況,比如:x趨近于零,sin(1/x)的極限不存在也不為無窮。每次使用都必須驗證三 條件是否同時滿足。
再來看看重要極限,重要極限有兩個,一個是x趨近于零時,sinx/x趨近于零,另一個是x趨近于零時,(1+x)1/x趨近于e,或者寫成x 趨近于無窮,(1+1/x)x趨近于e(1∞形式),總結(jié)起來就是(1+無窮小量)無窮小量的倒數(shù),所以要記住重要極限的特點,并可以將其推廣,即把x換 成f(x),在f(x)趨近零,sinf(x)/f(x)趨近于零,(1+f(x))1/f(x)趨近于e,或f(x)趨近無窮,(1+1 /f(x))f(x)趨近于e,還要注意當給你冪指函數(shù)的極限計算,先要判斷他是不是1∞形式,如果是,就可以考慮利用重要極限解決,湊出相應(yīng)的形式就可 以得出結(jié)論。
這里還要特別的提一下幾個未定式(∞-∞,0·∞,1∞,00,∞∞),這五個未定式需要轉(zhuǎn)化為0/0或∞/∞,其中∞-∞可以通過通分、提取 或者代換將其轉(zhuǎn)化,0·∞可以將0或者∞放在分母上,以實現(xiàn)轉(zhuǎn)化,1∞,00,∞∞利用對數(shù)恒等變化來實現(xiàn)轉(zhuǎn)化,其中1∞還可以利用重要極限計算。
綜上所述,等價無窮小替換和重要極限要掌握基本公式和推廣,可以將任意變形公式轉(zhuǎn)化為標準形式,并且給定一個極限首要任務(wù)就是利用等價無窮替換 公式化簡。洛必達法則處理七種未定式,靈活地將不同形式的極限轉(zhuǎn)化為0/0或∞/∞,計算時注意滿足洛必達法則的三個條件,希望同學(xué)們可以掌握基礎(chǔ),靈活 地解決不同類型的極限。