在考研的沖刺階段,時(shí)間和精力都有限,考生們要合理的分配利用,數(shù)學(xué)科目,要著重對(duì)錯(cuò)題集的利用,題海戰(zhàn)術(shù)放慢,對(duì)于重點(diǎn)、難點(diǎn)和疑點(diǎn)多研究研究,下面小編總結(jié)了數(shù)理統(tǒng)計(jì)估計(jì)方法三大要點(diǎn)和5個(gè)常考的知識(shí)點(diǎn),希望對(duì)你有幫助。
一、構(gòu)建知識(shí)框架
問題主要集中在概率論與數(shù)理統(tǒng)計(jì)中最后一部分的內(nèi)容。它的考試范疇是矩估計(jì)和極大似然估計(jì)。
所以,在學(xué)習(xí)這部分之前,大家要把統(tǒng)計(jì)學(xué)的基本知識(shí)搞清楚,了解常見的統(tǒng)計(jì)量及其分布。而且大家還要深刻理解大數(shù)定理和中心極限定理的內(nèi)涵。在這些基礎(chǔ)上,大家學(xué)習(xí)矩估計(jì)和極大似然估計(jì)就好多了。
二、把握知識(shí)原理
先看矩估計(jì),它的本質(zhì)原理是樣本矩有相合性,所以可以用樣本矩來替代總體矩。同時(shí)總體矩中含有未知參數(shù)。所以通過建立含有未知參數(shù)的樣本矩的方程就可以把參數(shù)給估計(jì)出來。
再看極大似然估計(jì),它的本質(zhì)原理是基于一種假設(shè),即我們觀察的一組樣本數(shù)據(jù),那么觀察這組數(shù)據(jù)發(fā)生的概率應(yīng)該是比較大的。所以我們對(duì)參數(shù)的估計(jì)就是要找一個(gè)估計(jì)量使得這組數(shù)據(jù)發(fā)生的概率最大。
總之,只有理解了矩估計(jì)和極大似然估計(jì)的深刻原理,我們才能把握好這個(gè)知識(shí),才能更好的應(yīng)用它。
三、多做習(xí)題練習(xí)
有句古話:光說不練假把式。所以對(duì)知識(shí)的熟練掌握還是要通過做題來實(shí)現(xiàn)。同時(shí),我也反對(duì)題海戰(zhàn)術(shù),做題不是盲目的做題,不是只做不練。做題應(yīng)該是有選擇的做題,做一個(gè)題就應(yīng)該了解一個(gè)方法,掌握一個(gè)原理。
所以,大家可以參考?xì)v年真題來進(jìn)行練習(xí)。每做一個(gè)題,大家就該考慮下它是怎么考察我們所學(xué)的知識(shí)點(diǎn)的。如果做錯(cuò)了,大家還要多進(jìn)行反思。找到做錯(cuò)的原因,并且逐步改正。這樣才能長久的提高。
5個(gè)?嫉闹R(shí)點(diǎn):
1.幾個(gè)易混概念:連續(xù),可導(dǎo),存在原函數(shù),可積,可微,偏導(dǎo)數(shù)存在他們之間的關(guān)系式怎么樣的?存在極限,導(dǎo)函數(shù)連續(xù),左連續(xù),右連續(xù),左極限,右極限,左導(dǎo)數(shù),右導(dǎo)數(shù),導(dǎo)函數(shù)的左極限,導(dǎo)函數(shù)的右極限。
2.羅爾定理:設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù)(其中a不等于b),在開區(qū)間(a,b)上可導(dǎo),且f(a)=f(b),那么至少存在一點(diǎn)ξ∈(a、b),使得f‘(ξ)=0。羅爾定理是以法國數(shù)學(xué)家羅爾的名字命名的。羅爾定理的三個(gè)已知條件的意義,①f(x)在[a,b]上連續(xù)表明曲線連同端點(diǎn)在內(nèi)是無縫隙的曲線;②f(x)在內(nèi)(a,b)可導(dǎo)表明曲線y=f(x)在每一點(diǎn)處有切線存在;③f(a)=f(b)表明曲線的割線(直線AB)平行于x軸;羅爾定理的結(jié)論的直幾何意義是:在(a,b)內(nèi)至少能找到一點(diǎn)ξ,使f’(ξ)=0,表明曲線上至少有一點(diǎn)的切線斜率為0,從而切線平行于割線AB,與x軸平行。
3.泰勒公式展開的應(yīng)用專題:我以前,以及我所有的同學(xué),看到泰勒公式就哆嗦,因?yàn)檎σ豢春荛L很恐怖,瞬間大腦空白,身體失重的感覺。其實(shí)在我搞明白一下幾點(diǎn)后,原來的癥狀就沒有了。第一:什么情況下要進(jìn)行泰勒展開;第二:以哪一點(diǎn)為中心進(jìn)行展開;第三:把誰展開;第四:展開到幾階?
4.應(yīng)用多次中值定理的專題:大部分的考研題,一般要考察你應(yīng)用多次中值定理,最重要的就是要培養(yǎng)自己對(duì)這種題目的敏感度,要很快反映老師出這題考哪幾個(gè)中值定理,我的敏感性是靠自己多練習(xí)綜合題培養(yǎng)出來的。我會(huì)經(jīng)常會(huì)去復(fù)習(xí),那樣我對(duì)中值定理的題目早已沒有那種剛學(xué)高數(shù)時(shí)的害怕之極。要想對(duì)微分中值定理這塊的題目有條理的掌握,看我這個(gè)總結(jié)定會(huì)事半功倍的。
5.對(duì)稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應(yīng)用:這幾乎每年必考,要么小題中考,要么大題中要用,這是必須掌握的知識(shí),但是往往不是那么容易就靠做3,4個(gè)題目就能了解這知識(shí)點(diǎn)的應(yīng)用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結(jié)果,但是要是能用以上性質(zhì),那可真是三下五除二搞定,這方面的感覺相信大家有過,可是或許僅僅是曇花一現(xiàn),因?yàn)槟阕龀鰜砹艘詾橐院缶鸵欢〞?huì)在相似的題目中用,其實(shí)不然,因?yàn)閮H僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時(shí)候或許就是考場(chǎng)上了,你可能頓時(shí)苦思冥想,最終還是選擇了最傻的辦法,浪費(fèi)了寶貴時(shí)間。說這些其實(shí)就是說明,考場(chǎng)上的正常或超常發(fā)揮是建立在平時(shí)踏實(shí)做,見識(shí)廣,嚴(yán)要求的基礎(chǔ)上。