教師資格證初中數(shù)學(xué)說課稿
說課是每一個老師需要具備的基本能力,在教師資格證的考試中也是必考的一項(xiàng)內(nèi)容。接下來小編搜集了教師資格證初中數(shù)學(xué)說課稿,僅供大家參考,希望幫助到大家。
篇一:多項(xiàng)式除以單項(xiàng)式”說課稿
今天我說課的題目是“多項(xiàng)式除以單項(xiàng)式”。本節(jié)課選自北京師范大學(xué)出版社出版的《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》七年級(下)。這一節(jié)課是本冊書第一章第九節(jié)第二課時的內(nèi)容。下面我就從以下四個方面一一教材分析、教材處理、教學(xué)方法和教學(xué)手段、教學(xué)過程 的設(shè)計(jì)向大家介紹一下我對本節(jié)課的理解與設(shè)計(jì)。
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo) 、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。
1、多項(xiàng)式除以單項(xiàng)式在整式的運(yùn)算中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力,在解決問題的過程中了解數(shù)學(xué)的價(jià)值,發(fā)展“用數(shù)學(xué)”的信心。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。多項(xiàng)式除以單項(xiàng)式作為整式的運(yùn)算的一部分,它是整式運(yùn)算的重要內(nèi)容之一,它是整個初中代數(shù)的重要部分。
2、就第一章而言, 多項(xiàng)式除以單項(xiàng)式是本章的一個重點(diǎn)。整式的運(yùn)算這一章,多項(xiàng)式除以單項(xiàng)式是很重要的一塊,整式的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在整式范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此乘法的運(yùn)算是本章的關(guān)鍵,而除法又是學(xué)生接觸到的較復(fù)雜的整式的運(yùn)算,學(xué)生能否接受和形成在整式的運(yùn)算中轉(zhuǎn)化思考方式及推理的方法等,都在本節(jié)中。
從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學(xué)目標(biāo) 、重點(diǎn)和難點(diǎn)。
新課程標(biāo)準(zhǔn)是我們確定教學(xué)目標(biāo) ,重點(diǎn)和難點(diǎn)的依據(jù)。重點(diǎn)是多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用。多項(xiàng)式除以單項(xiàng)式,其基本方法與步驟是化歸為單項(xiàng)式除以單項(xiàng)式,因此多項(xiàng)式除以單項(xiàng)式的運(yùn)算關(guān)鍵是將它轉(zhuǎn)化為單項(xiàng)式除法的運(yùn)算,再準(zhǔn)確應(yīng)用相關(guān)的運(yùn)算法則。
難點(diǎn)是理解法則導(dǎo)出的根據(jù)。根據(jù)除法是乘法的逆運(yùn)算可知,多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則的實(shí)質(zhì)是把多項(xiàng)式除以單項(xiàng)式的的運(yùn)算轉(zhuǎn)化為單項(xiàng)式的除法運(yùn)算。由于 ,故多項(xiàng)式除以單項(xiàng)式的法則也可以看做是乘法對加法的分配律的應(yīng)用。
二、教材處理
本節(jié)課是在前面學(xué)習(xí)了單項(xiàng)式除以單項(xiàng)式的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)掌握同底數(shù)冪的乘法、冪的乘方、積的乘方、同底數(shù)冪的除法等知識,因此我沒有把時間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動形象的課件引例,讓學(xué)生自主參與,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程 的設(shè)計(jì)中具體體現(xiàn)。而且在做練習(xí)的過程中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進(jìn)行。
三、教學(xué)方法
在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位。本節(jié)是新課內(nèi)容的學(xué)習(xí),教學(xué)過程 中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動情況,使其在教學(xué)過程 中在掌握知識同時、發(fā)展智力、受到教育。
四、教學(xué)過程的設(shè)計(jì)
1、回顧與思考,通過單項(xiàng)式除以單項(xiàng)式法則的復(fù)習(xí),完成四道單項(xiàng)式除以單項(xiàng)式的練習(xí)題,為本節(jié)課探索規(guī)律,概括多項(xiàng)式除以單項(xiàng)式的法則做好鋪墊。
2、探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個嘗試練習(xí)啟發(fā)學(xué)生自主解答,使學(xué)生該過程中體會多項(xiàng)式除以單項(xiàng)式規(guī)律。由于采用了較靈活的教學(xué)手段,學(xué)生能夠積極的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出多項(xiàng)式除以單項(xiàng)式的法則。
3、例題解析,通過課件生動形象的課件,引導(dǎo)學(xué)生嘗試完成例題,加深對多項(xiàng)式除以單項(xiàng)式的法則的理解與應(yīng)用。
4、鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個循序漸進(jìn)的過程,所以習(xí)題的配備由易而難,使學(xué)生在練習(xí)的過程中能夠逐步的提高能力,得到發(fā)展。并且采用小組合作交流形式,使課堂氣氛活躍,充分調(diào)動學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。
5、歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對本節(jié)的課進(jìn)行說明。
以上是我對本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評指正,以達(dá)到提高個人教學(xué)能力的目的。
篇二:《正弦定理》說課稿
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計(jì)。
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理和余弦定理的`知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二、教法
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點(diǎn)
三、學(xué)法:
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
四、教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實(shí)踐探究,形成概念,大約用25分鐘
第三:應(yīng)用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實(shí)際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。
3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明
(四)歸納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認(rèn)識
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
(從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
篇三:《一元二次方程》說課稿
一、教材分析:
1、教材的地位和作用
一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)中占有重要地位。通過一元二次方程的學(xué)習(xí),可以對已學(xué)過實(shí)數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學(xué)習(xí)可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎(chǔ)。此外,學(xué)習(xí)一元二次方程對其它學(xué)科有重要意義。本節(jié)課是一元二次方程的概念,是通過豐富的實(shí)例,讓學(xué)生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。
2、 教學(xué)目標(biāo)
根據(jù)大綱的要求、本節(jié)教材的內(nèi)容和學(xué)生的好奇心、求知欲及已有的知識經(jīng)驗(yàn),本節(jié)課的三維目標(biāo)主要體現(xiàn)在:
知識與能力目標(biāo): 要求學(xué)生會根據(jù)具體問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學(xué)生歸納、分析的能力。
過程與方法目標(biāo):引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學(xué)生討論,讓學(xué)生自己抽象出一元二次方程的概念 。
情感、態(tài)度與價(jià)值觀:通過數(shù)學(xué)建模的分析、思考過程,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會做數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
3、 教學(xué)重點(diǎn)與難點(diǎn)
要運(yùn)用一元二次方程解決生活中的實(shí)際問題,首先必須了解一元二次方程的概念,而概念的教學(xué)又要從大量的實(shí)例出發(fā) 。所以,本節(jié)課的重點(diǎn)是:由實(shí)際問題列出一元二次方程和一元二次方程的概念。鑒于學(xué)生比較缺乏社會生活經(jīng)歷,處理信息的能力也較弱,因此把由實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)方程確定為本節(jié)課的難點(diǎn)。
二、教法、學(xué)法:
因?yàn)閷W(xué)生已經(jīng)學(xué)習(xí)了一元一次方程及相關(guān)概念,所以本節(jié)課我主要采用啟發(fā)式、類比法教學(xué)。教學(xué)中力求體現(xiàn)“問題情景---數(shù)學(xué)模型-----概念歸納”的模式。但是由于學(xué)生將實(shí)踐問題轉(zhuǎn)化為數(shù)學(xué)方程的能力有限,所以,本節(jié)課借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過直觀形象的觀察與演示,從具體的問題情景中抽象出數(shù)學(xué)問題,建立數(shù)學(xué)方程,從而突破難點(diǎn)。同時學(xué)生在現(xiàn)實(shí)的生活情景中,經(jīng)歷數(shù)學(xué)建模,經(jīng)過自主探索和合作交流的學(xué)習(xí)過程,產(chǎn)生積極的情感體驗(yàn),進(jìn)而創(chuàng)造性地解決問題,有效發(fā)揮學(xué)生的思維能力。
三、教學(xué)過程設(shè)計(jì)
1、創(chuàng)設(shè)情景,引入新課
因?yàn)閿?shù)學(xué)來源與生活,所以以學(xué)生的實(shí)際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。通過微機(jī)演示課本中的實(shí)例,并應(yīng)用微機(jī)對其進(jìn)行分析,充分顯示微機(jī)演示中的生動性、靈活性,把圖形的靜變成動,增強(qiáng)直觀性;同時幫助學(xué)生從實(shí)際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進(jìn)入新課。
2、 啟發(fā)探究,獲取新知
通過上述情景分析,讓學(xué)生小組合作,列出方程。英國一位著名的數(shù)學(xué)教育心理學(xué)家曾 說:概念的教學(xué)要從大量實(shí)例出發(fā),通過實(shí)例幫助完成定義,而不是教定義。因此,我在課本的基礎(chǔ)上,又補(bǔ)充2個實(shí)例,而且,補(bǔ)充的例題所列出的方程正好是一個一次項(xiàng)為0,一個常數(shù)項(xiàng)為0 的特殊一元二次方程,這為后面概括得出一元二次方程的一般形式作準(zhǔn)備。在學(xué)生列出方程后,對所列方程進(jìn)行整理,并引導(dǎo)學(xué)生分析所列方程的特征,同時與一元一次方程相比較,找出兩者的區(qū)別與聯(lián)系,并類比一元一次方程的概念來得出一元二次方程的概念。由于一元二次方程的概念是本節(jié)的重點(diǎn),所以在形成概念的過程中主要引導(dǎo)學(xué)生積極主動進(jìn)行自我嘗試、自我分析、自我修正、自我反思,讓學(xué)生真正理解一元二次方程概念的內(nèi)涵:(1)是整式方程(2)只含有一個未知數(shù) (3)未知數(shù)的最高次數(shù)是2。因?yàn)槿魏我粋一元一次方程都可以化為 “ax+b=c(a≠0)”的形式,由此類比得出一元二次方程的一般形式為“ax2+bx+c=0(a≠0)”;并由一元一次方程項(xiàng)及系數(shù)的概念聯(lián)想得出一元二次方程的項(xiàng)及系數(shù)的概念。
3、 練習(xí)反饋,應(yīng)用拓展
在這個環(huán)節(jié),我遵循鞏固與發(fā)展想結(jié)合的原則,將學(xué)生分成小組,以小組競賽活動的方式對本課知識進(jìn)行鞏固。不僅調(diào)動學(xué)生學(xué)習(xí)的積極性、主動性,增強(qiáng)學(xué)生積極參與教學(xué)活動意識和集體榮譽(yù)感,而且還能培養(yǎng)學(xué)生的觀察能力和判斷能力。同時,對概念進(jìn)行變式應(yīng)用,可以開拓學(xué)生思維,培養(yǎng)學(xué)生的創(chuàng)新意識。
4、 小結(jié)歸納,上升理性
引導(dǎo)學(xué)生從以下3個方面進(jìn)行小結(jié),(1)本節(jié)課我們學(xué)習(xí)了哪些知識?(2)學(xué)習(xí)過程中用了哪些數(shù)學(xué)方法?(3)確定一元二次方程的項(xiàng)及系數(shù)時要注意什么?以培養(yǎng)學(xué)生的歸納、概括能力。
5、 作業(yè)布置
考慮帶學(xué)生在知識、技能、能力等方面的發(fā)展都不盡相同,因此,我分層次布置作業(yè),以便同時兼顧到學(xué)有困難和學(xué)有余力的學(xué)生。
四、教學(xué)評價(jià)
根據(jù)新課程標(biāo)準(zhǔn)的評價(jià)理念,在教學(xué)過程中,不僅注重學(xué)生的參與意識和學(xué)生對待學(xué)習(xí)的態(tài)度是否積極,而且注重引導(dǎo)學(xué)生嘗試從不同角度分析和解決問題。
【教師資格證初中數(shù)學(xué)說課稿】相關(guān)文章:
初中數(shù)學(xué)說課稿-《數(shù)軸》12-12
初中數(shù)學(xué)優(yōu)秀說課稿《垂線》11-11
初中數(shù)學(xué)說課稿15篇11-04
教師資格證說課稿模板12-04
初中數(shù)學(xué)說課稿:《完全平方公式》11-21
初中數(shù)學(xué)《完全平方公式》說課稿范文02-02