久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學(xué)說課稿

時間:2021-08-20 14:11:32 高中說課稿 我要投稿

實用的高中數(shù)學(xué)說課稿范文匯編七篇

  作為一名為他人授業(yè)解惑的教育工作者,時常需要編寫說課稿,說課稿有助于學(xué)生理解并掌握系統(tǒng)的知識。那么大家知道正規(guī)的說課稿是怎么寫的嗎?以下是小編收集整理的高中數(shù)學(xué)說課稿7篇,僅供參考,希望能夠幫助到大家。

實用的高中數(shù)學(xué)說課稿范文匯編七篇

高中數(shù)學(xué)說課稿 篇1

  各位評委老師你們好,我是第?號選手。我今天說課的題目是《 》,我將從教材分析,教法,學(xué)法,教學(xué)程序,等幾個方面進行我的說課。

  一,教材分析

  這部分我主要從3各方面闡述

  1, 教材的地位和作用

  《 》是北師大版必修?第?章第?節(jié)的內(nèi)容,在此之前,同學(xué)們已經(jīng)學(xué)習(xí)了、,這些對本節(jié)課的學(xué)習(xí)有一定的鋪墊作用,同是學(xué)好本節(jié)的內(nèi)容不僅加深前面所學(xué)習(xí)的知識,而且為后面我們將要學(xué)習(xí)的?知識打好基礎(chǔ),?所以說本節(jié)課的學(xué)習(xí)在整個高中數(shù)學(xué)學(xué)習(xí)過程中占有重要地位!

  2.根據(jù)教學(xué)大綱的規(guī)定,教學(xué)內(nèi)容的要求,教學(xué)對象的實情我確定了如下3維教學(xué)目標(biāo)(i)知識目標(biāo):

  II能力目標(biāo);初步培養(yǎng)學(xué)生歸納,抽象,概括的思維能力。

  訓(xùn)練學(xué)生認(rèn)識問題,分析問題,解決問題的能力

  III情感目標(biāo);通過學(xué)生的探索,史學(xué)生體會數(shù)學(xué)就在我們身邊,讓學(xué)生發(fā)現(xiàn)生活的數(shù)學(xué),培養(yǎng)不斷超越的創(chuàng)新品質(zhì),提高數(shù)學(xué)素養(yǎng)。

  3, 結(jié)合以上分析以及高一學(xué)生的人知水平我確定啦本節(jié)課的重難點

  教學(xué)重點:

  教學(xué)難點;

  二,教法

  教學(xué)方法是完成教學(xué)任務(wù)的手段,恰當(dāng)?shù)膶W(xué)者教學(xué)方法至關(guān)重要,根據(jù)本節(jié)課的教學(xué)內(nèi)容,考慮到高一學(xué)生已經(jīng)初步具有一定的探索能力,并喜歡挑戰(zhàn)問題的實際情況,為啦更有效的突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的知道思想。我主要采用 問題探究法 引導(dǎo)發(fā)現(xiàn)發(fā),案例教學(xué)法,講授法,在教學(xué)過程中精心設(shè)計帶有啟發(fā)性和思考性的問題,滿足學(xué)生探索的欲望,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,激發(fā)來自學(xué)生主體最有利的動力。并運用多媒體課件的形式,更形象直觀,提高教學(xué)效果的同時加大啦課堂密度!

  學(xué)法

  根據(jù)學(xué)生的年齡特征,運用訊息漸進,逐步升入,理論聯(lián)系實際的規(guī)律,讓學(xué)生從問題中質(zhì)疑,嘗試,歸納,總結(jié),運用。培養(yǎng)學(xué)生發(fā)現(xiàn)問題,研究問題,分析問題的能力。自主參與知識的發(fā)生,發(fā)展,形成過程,完成從感性認(rèn)識 到理性思維的質(zhì)的飛躍,史學(xué)生在知識和能力方面都有所提高。

  三,教學(xué)程序

  1, 創(chuàng)設(shè)情境,提出問題

  讓學(xué)生產(chǎn)生強烈的問題意識,學(xué)生試著利用以前的知識經(jīng)驗,同化索引出當(dāng)前學(xué)習(xí)的新知識,激發(fā)學(xué)習(xí)的興趣和動機。

  2, 引導(dǎo)探究,直奔主題。(揭示概念)

  參用小組合作的方式,各小組派代表發(fā)表成果,教師作為教學(xué)的引導(dǎo)者,給予肯定的評價,并給出一定的指導(dǎo),最后師生共同得出??!教師引導(dǎo)學(xué)生進一步學(xué)習(xí)。整個過程充分突出學(xué)生的主體地位,培養(yǎng)學(xué)生合作探究的能力,激發(fā)興趣,更讓學(xué)生在思考學(xué)術(shù)問題以及解決數(shù)學(xué)問題的思想方法上有更深的交流。

  3, 自我嘗試,初步應(yīng)用

  在講解是,不僅在于怎樣接,更在于為什么這樣解,及時引導(dǎo)學(xué)生探究運用知識,解決問題的方法,及時對解題方法和規(guī)律進行概括,有利于培養(yǎng)學(xué)生的思維能力。 4 .當(dāng)堂訓(xùn)練,鞏固深化(反饋矯正)

  通過學(xué)生的主體參與,讓學(xué)生鞏固所學(xué)的知識,實現(xiàn)對知識再認(rèn)識的以及在數(shù)學(xué)解題思想方法層面上進一步升華

  5,歸納小結(jié),回顧反思

  從知識,方法,經(jīng)驗等方面進行總結(jié)。讓學(xué)生思考本節(jié)課學(xué)到啦那些知識,還有那些疑問。本節(jié)課最大的體驗。本節(jié)課你學(xué)會那些技能。

  知識性的內(nèi)容小結(jié),可以把課堂教學(xué)傳授的知識盡快轉(zhuǎn)化為學(xué)生的素養(yǎng),數(shù)學(xué)思想發(fā)放的小結(jié),可以使學(xué)生更深刻地理解數(shù)學(xué)思想發(fā)放在解題中的地位和作用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。

  ,6,變式延伸,布置作業(yè)

  必做題,對本屆課學(xué)生知識水平的反饋。選作題,對本節(jié)課知識內(nèi)容的延伸。使不同層次學(xué)生都可以收獲成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,讓每個學(xué)生在原有的基礎(chǔ)上有所發(fā)展。做到人人學(xué)數(shù)學(xué),人人學(xué)不同的數(shù)學(xué)。

  7板書設(shè)計

  力圖簡潔,形象,直觀,概括以便學(xué)生易于掌握。

  四,教學(xué)評價

  學(xué)生學(xué)習(xí)結(jié)果評價當(dāng)然重要,但是學(xué)習(xí)過程的評價更加重要。本節(jié)課中高度重視學(xué)生學(xué)習(xí)過程中的參與度,自信心,團隊精神,合作意識,獨立思考習(xí)慣的養(yǎng)成。數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感,,學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計可以讓更多學(xué)生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以駐京生生交流,知識的生成和問題的解決可以讓學(xué)生感受到成功的喜悅?b密的思考可以培養(yǎng)學(xué)生獨立思考的習(xí)慣,讓學(xué)生在教室評價,學(xué)生評價以及自我評價的過程中體驗知識的積累,探索能力的長進和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ),

  以上就是我的說課內(nèi)容。不當(dāng)之處,希望各位老師給予指正。謝謝各位評委老師!你們幸苦啦!

高中數(shù)學(xué)說課稿 篇2

  高三第一階段復(fù)習(xí),也稱“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識產(chǎn)生全新認(rèn)識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復(fù)習(xí)時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強復(fù)習(xí)的針對性,講求實效。

  一、內(nèi)容分析說明

  1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項式乘法的繼續(xù),它所研究的二項式的乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

 。1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項式的變形起到復(fù)習(xí)深化作用。

 。2)二項式定理與概率理論中的二項分布有內(nèi)在聯(lián)系,利用二項式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò)。

  (3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

  2、高考中二項式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的

  試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的

  近似值。

  二、學(xué)校情況與學(xué)生分析

  (1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。

  (2)授課班是政治、地理班,學(xué)生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項數(shù)學(xué)活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學(xué)生好記筆記。

  三、教學(xué)目標(biāo)

  復(fù)習(xí)課二項式定理計劃安排兩個課時,本課是第一課時,主要復(fù)習(xí)二項展開式和通項。根據(jù)歷年高考對這部分的考查情況,結(jié)合學(xué)生的特點,設(shè)定如下教學(xué)目標(biāo):

  1、知識目標(biāo):(1)理解并掌握二項式定理,從項數(shù)、指數(shù)、系數(shù)、通項幾個特征熟記它的展開式。

 。2)會運用展開式的通項公式求展開式的特定項。

  2、能力目標(biāo):(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。

  (2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數(shù)學(xué)思想方法。

  3、情感目標(biāo):通過對二項式定理的復(fù)習(xí),使學(xué)生感覺到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。

  四、教學(xué)過程

  1、知識歸納

 。1)創(chuàng)設(shè)情景:①同學(xué)們,還記得嗎? 、 、 展開式是什么?

 、趯W(xué)生一起回憶、老師板書。

  設(shè)計意圖:①提出比較容易的問題,吸引學(xué)生的注意力,組織教學(xué)。

  ②為學(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。

 。2)二項式定理:①設(shè)問 展開式是什么?待學(xué)生思考后,老師板書

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

  ②老師要求學(xué)生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項里a、b的指數(shù)和均為n。

 、垤柟叹毩(xí) 填空

  設(shè)計意圖:①教給學(xué)生記憶的方法,比較分析公式的特點,記規(guī)律。

 、谧冇霉,熟悉公式。

  (3) 展開式中各項的系數(shù)C , C , C ,… , 稱為二項式系數(shù).

  展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.

  2、例題講解

  例1求 的展開式的第4項的二項式系數(shù),并求的第4項的系數(shù)。

  講解過程

  設(shè)問:這里 ,要求的第4項的有關(guān)系數(shù),如何解決?

  學(xué)生思考計算,回答問題;

  老師指明①當(dāng)項數(shù)是4時, ,此時 ,所以第4項的二項式系數(shù)是 ,

 、诘4項的系數(shù)與的第4項的二項式系數(shù)區(qū)別。

  板書

  解:展開式的第4項

  所以第4項的系數(shù)為 ,二項式系數(shù)為 。

  選題意圖:①利用通項公式求項的系數(shù)和二項式系數(shù);②復(fù)習(xí)指數(shù)冪運算。

  例2 求 的展開式中不含的 項。

  講解過程

  設(shè)問:①不含的 項是什么樣的項?即這一項具有什么性質(zhì)?

 、趩栴}轉(zhuǎn)化為第幾項是常數(shù)項,誰能看出哪一項是常數(shù)項?

  師生討論 “看不出哪一項是常數(shù)項,怎么辦?”

  共同探討思路:利用通項公式,列出項數(shù)的方程,求出項數(shù)。

  老師總結(jié)思路:先設(shè)第 項為不含 的項,得 ,利用這一項的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項公式,便可得到常數(shù)項。

  板書

  解:設(shè)展開式的第 項為不含 項,那么

  令 ,解得 ,所以展開式的第9項是不含的 項。

  因此 。

  選題意圖:①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。

  ②判斷第幾項是常數(shù)項運用方程的思想;找到這一項的項數(shù)后,實現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。

  例3求 的展開式中, 的系數(shù)。

  解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。

  板書

  解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。

  而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數(shù)分別是: 。

  所以 的展開式中 的系數(shù)為

  例4 如果在( + )n的展開式中,前三項系數(shù)成等差數(shù)列,求展開式中的有理項.

  解:展開式中前三項的系數(shù)分別為1, , ,

  由題意得2× =1+ ,得n=8.

  設(shè)第r+1項為有理項,T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.

  有理項為T1=x4,T5= x,T9= .

  3、課堂練習(xí)

  1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

  答案:C

  2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數(shù)項是

  A.14 B.14 C.42 D.-42

  解析:設(shè)(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·

 。ǎ1)r·x ,

  當(dāng)- +3(7-r)=0,即r=6時,它為常數(shù)項,∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展開式中各項系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)

  解析:∵(x +x )n的展開式中各項系數(shù)和為128,

  ∴令x=1,即得所有項系數(shù)和為2n=128.

  ∴n=7.設(shè)該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3時,x5項的系數(shù)為C =35.

  答案:35

  五、課堂教學(xué)設(shè)計說明

  1、這是一堂復(fù)習(xí)課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數(shù)、項的二項式系數(shù)等有關(guān)概念的理解和認(rèn)識,形成求二項式展開式某些指定項的基本技能,同時,要培養(yǎng)學(xué)生的運算能力,邏輯思維能力,強化方程的思想和轉(zhuǎn)化的思想。

  2、在例題的選配上,我設(shè)計了一定梯度。第一層次是給出二項式,求指定的項,即項數(shù)已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項為所求,即先求項數(shù),利用通項公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項的系數(shù),恒等變形是實現(xiàn)轉(zhuǎn)化的手段。在求每個局部展開式的某項系數(shù)時,又有分類討論思想的指導(dǎo)。而例4的設(shè)計是想增加題目的綜合性,求的n過程中,運用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。

  六、個人見解

高中數(shù)學(xué)說課稿 篇3

  1、教學(xué)目標(biāo):

  一、借助單位圓理解任意角的三角函數(shù)的定義。

  二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。

  三、通過學(xué)生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。

  四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。

  2、教學(xué)重點與難點:

  重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。

  難點:任意角的三角函數(shù)概念的建構(gòu)過程。

  授課過程:

  一、引入

  在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。

  二、創(chuàng)設(shè)情境

  三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時,我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

  學(xué)生情況估計:學(xué)生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標(biāo)。

  問題:

  1、銳角三角函數(shù)能否表示成第二種比值方式?

  2、點P能否取在終邊上的其它位置?為什么?

  3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。

  練習(xí):計算的各三角函數(shù)值。

  三、任意角的三角函數(shù)的定義

  角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

  嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

  評價學(xué)生給出的定義。給出任意角三角函數(shù)的定義。

  四、解析任意角三角函數(shù)的定義

  三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)

  對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。

  五、三角函數(shù)的應(yīng)用。

  1、已知角,求a的三角函數(shù)值。

  2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。

  以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時,老師提出問題:

  1、已知角如何求三角函數(shù)值?

  2、利用角a的終邊上任意一點的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

  3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

  4、探究:三角函數(shù)的值在各象限的符號。

  六、小結(jié)及作業(yè)

  教案設(shè)計說明:

  新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。

  首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學(xué)生體會到新知識的發(fā)生是可能的,自然的。

  其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時讓學(xué)生去辨證這個想法是否是科學(xué)的?因為一個概念是嚴(yán)謹(jǐn)?shù)模茖W(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學(xué)生去體驗一個新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。

  再次,讓學(xué)生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點的坐標(biāo)這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。

高中數(shù)學(xué)說課稿 篇4

  一、說教材:

  1、地位、作用和特點:

  《 》是高中數(shù)學(xué)課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。

  本節(jié)是在學(xué)習(xí)了 之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對 的知識進一步鞏固和深化,又可以為后面學(xué)習(xí) 打下基礎(chǔ),所以

  是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I、生產(chǎn)、科學(xué)研究 有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是

  特點之二是: 。

  教學(xué)目標(biāo):

  根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

 。1)知識目標(biāo):A、B、C

  (2)能力目標(biāo):A、B、C

 。3)德育目標(biāo):A、B

  教學(xué)的重點和難點:

 。1)教學(xué)重點:

 。2)教學(xué)難點:

  二、說教法:

  基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計盡量做到注意學(xué)生的心理特點和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學(xué)程序:

  導(dǎo)入新課 新課教學(xué)

  反饋發(fā)展

  三、說學(xué)法:

  學(xué)生學(xué)習(xí)的過程實際上就是學(xué)生主動獲取、整理、貯存、運用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進行的,是通過優(yōu)化教學(xué)程序來增強學(xué)法指導(dǎo)的目的性和實效性。在本節(jié)課的教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。

  1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

  本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依

  據(jù)此知識與具體事例結(jié)合、推導(dǎo)出 ,這正是一個分析和推理的全過程。

  2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過程。 主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授 時,可通過

  演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。

  3、讓學(xué)生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點,及時總結(jié)和推廣。

  4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

  四、教學(xué)過程:

 。ㄒ唬⒄n題引入:

  教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說課稿》。C、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。

 。ǘ、新課教學(xué):

  1、針對上面提出的問題,設(shè)計學(xué)生動手實踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進行交流、討論得出新知,并進一步提出下面的問題。

  2、組織學(xué)生進行新問題的實驗方法設(shè)計—這時在設(shè)計上最好是有對比性、數(shù)學(xué)方法性的設(shè)計實驗,指導(dǎo)學(xué)生實驗、通過多媒體的輔助,顯示學(xué)生的實驗數(shù)據(jù),模擬強化出實驗情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

 。ㄈ、實施反饋:

  1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學(xué)生的再次創(chuàng)新。

  2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

  五、板書設(shè)計:

  在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。

  六、說課綜述:

  以上是我對《 》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計。在整個課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的 知識,并把它運用到對

  的認(rèn)識,使學(xué)生的認(rèn)知活動逐步深化,既掌握了知識,又學(xué)會了方法。

  總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

高中數(shù)學(xué)說課稿 篇5

  各位評委老師,大家好!

  我是本科數(shù)學(xué)**號選手,今天我要進行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時《函數(shù)單調(diào)性與最大(。┲怠贰N覍慕滩姆治;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評價五個方面來陳述我對本節(jié)課的設(shè)計方案。懇請在座的專家評委批評指正。

  一、教材分析

  1、教材的地位和作用

 。1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);

  (2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

 。3)它是歷年高考的熱點、難點問題

  2、教材重、難點

  重點:函數(shù)單調(diào)性的定義

  難點:函數(shù)單調(diào)性的證明

  重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)

  二、教學(xué)目標(biāo)

  知識目標(biāo):

  (1)函數(shù)單調(diào)性的定義

 。2)函數(shù)單調(diào)性的證明

  能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

  情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識

  三、教法學(xué)法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法

  2、學(xué)法分析

  “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

  四、教學(xué)過程

  1、以舊引新,導(dǎo)入新知

  通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)

  2、創(chuàng)設(shè)問題,探索新知

  緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。

  讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。

  讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。

  3、例題講解,學(xué)以致用

  例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。

  例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。

  4、歸納小結(jié)

  本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。

  5、作業(yè)布置

  為了讓學(xué)生學(xué)習(xí)不同的`數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1、3A組1、2、3 ,二組 習(xí)題1、3A組2、3、B組1、2

  6、板書設(shè)計

  我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。

  五、教學(xué)評價

  本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機和外界刺激協(xié)調(diào)作用,促進其數(shù)學(xué)素養(yǎng)不斷提高。

  以上就是我對本節(jié)課的設(shè)計,謝謝!

高中數(shù)學(xué)說課稿 篇6

  尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標(biāo)準(zhǔn)試驗教科書數(shù)學(xué)必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時3.2.1直線的點斜式方程的內(nèi)容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過程及教學(xué)特點等四個方面具體說明。

  一、教學(xué)背景的分析

  1.教材分析

  直線的方程是學(xué)生在初中學(xué)習(xí)了一次函數(shù)的概念和圖象及高中學(xué)習(xí)了直線的斜率后進行研究的。直線的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究解析幾何學(xué)的開始,對后續(xù)研究兩條直線的位置關(guān)系、圓的方程、直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內(nèi)容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。同時在這一節(jié)中利用坐標(biāo)法來研究曲線的數(shù)形結(jié)合、幾何直觀等數(shù)學(xué)思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。

  2.學(xué)情分析

  我校的生源較差,學(xué)生的基礎(chǔ)和學(xué)習(xí)習(xí)慣都有待加強。又由于剛開始學(xué)習(xí)解析幾何,第一次用坐標(biāo)法來求曲線的方程,在學(xué)習(xí)過程中,會出現(xiàn)“數(shù)”與“形”相互轉(zhuǎn)化的困難。另外我校學(xué)生在探究問題的能力,合作交流的意識等方面更有待加強。

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3.教學(xué)目標(biāo)

  (1)了解直線的方程的概念和直線的點斜式方程的推導(dǎo)過程及方法;

  (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學(xué)會準(zhǔn)確地使用直線的點斜式、斜截式方程 ;

  (3)從實例入手,通過類比、推廣、特殊化等,使學(xué)生體會從特殊到一般再到特殊的認(rèn)知規(guī)律;

  (4)提倡學(xué)生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關(guān)系等活動,培養(yǎng)學(xué)生主動探究知識、合作交流的意識,并初步了解數(shù)形結(jié)合在解析幾何中的應(yīng)用。

  4. 教學(xué)重點與難點

  (1)重點: 直線點斜式、斜截式方程的特點及其初步應(yīng)用。

  (2)難點:直線的方程的概念,點斜式方程的推導(dǎo)及點斜式、斜截式方程的應(yīng)用。

  二、教法學(xué)法分析

  1.教法分析:根據(jù)學(xué)情,為了能調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“實例引導(dǎo)的啟發(fā)式”問題教學(xué)法。幫助學(xué)生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關(guān)系,進而將直線的問題轉(zhuǎn)化為直線方程的問題,通過對直線的方程的研究,最終解決有關(guān)直線的一些簡單的問題。另外可以恰當(dāng)?shù)睦枚嗝襟w課件進行輔助教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。

  2.學(xué)法分析:學(xué)生從問題中嘗試、總結(jié)、質(zhì)疑、運用,體會學(xué)習(xí)數(shù)學(xué)的樂趣;通過推導(dǎo)直線的點斜式方程的學(xué)習(xí),要了解用坐標(biāo)法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數(shù)”的轉(zhuǎn)化思想。

  下面我就對具體的教學(xué)過程和設(shè)計加以說明:

  三、教學(xué)過程的設(shè)計及實施

  整個教學(xué)過程是由六個問題組成,共分為四個環(huán)節(jié),學(xué)習(xí)或涉及四個概念:

  溫故知新,澄清概念----直線的方程

  深入探究,獲得新知--------點斜式

  拓展知識,再獲新知--------斜截式

  小結(jié)引申,思維延續(xù)--------兩點式

  平面上的點可以用坐標(biāo)表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學(xué)習(xí)的內(nèi)容。

  (一)溫故知新,澄清概念----直線的方程

  問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標(biāo)有何關(guān)系?

  [學(xué)生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。

  [教師活動] 對于不同學(xué)生的表述進行分析、歸納,用規(guī)范的語言對方程和直線的方程進行描述。

  [設(shè)計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學(xué)生已有的數(shù)學(xué)知識去學(xué)數(shù)學(xué)”,從而突破難點。通過對這個問題的研究,一方面認(rèn)識到以方程的解為坐標(biāo)的點在直線上,另一方面認(rèn)識到直線上的點的坐標(biāo)滿足方程;從而使同學(xué)意識到直線可以由直線上任意一點P(x,y)的坐標(biāo)x和y之間的等量關(guān)系來表示。

  問題二:若直線經(jīng)過點A(-1, 3),斜率為-2,點P在直線l上。

  (1) 若點P在直線l上從A點開始運動,橫坐標(biāo)增加1時,點P的坐標(biāo)是 ;

  (2)畫出直線l,你能求出直線l的方程嗎?

  (3)若點P在直線l上運動,設(shè)P點的坐標(biāo)為(x,y),你會有什么方法找到x,y滿足的關(guān)系式?

  [學(xué)生活動]學(xué)生獨立思考5分鐘,必要的話可進行分組討論、合作交流。

  [教師活動]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導(dǎo)學(xué)生觀察發(fā)現(xiàn),得到當(dāng)點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。

  [設(shè)計意圖]復(fù)習(xí)斜率公式;待定系數(shù)法;初步體會坐標(biāo)法。同時引導(dǎo)學(xué)生注意為什么要把分式化簡?(若不化簡,就少一點),感受數(shù)學(xué)簡潔的美感和嚴(yán)謹(jǐn)性。還要指出這樣的事實:當(dāng)點P在直線l上運動時,P的坐標(biāo)(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標(biāo)的點在直線l上。把學(xué)生的思維引到用坐標(biāo)法研究直線的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

  (二)深入探究,獲得新知----點斜式

  問題三: ① 若直線l經(jīng)過點P0(x0,y0),且斜率為k,求直線l的方程。

 、谥本的點斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線?

  [學(xué)生活動] ①學(xué)生敘述,老師板書,強調(diào)斜率公式與點斜式的區(qū)別。 ②指導(dǎo)學(xué)生用筆轉(zhuǎn)一轉(zhuǎn)不難發(fā)現(xiàn),當(dāng)直線l的傾斜角α=90°時,斜率k不存在,當(dāng)然不存在點斜式方程;討論k=0的情況;觀察并總結(jié)點斜式方程的特征。

  [設(shè)計意圖] 由特殊到一般的學(xué)習(xí)思路,突破難點,培養(yǎng)學(xué)生的歸納概括能力。通過對這個問題的探究使學(xué)生獲得直線點斜式方程;由②知:當(dāng)直線斜率k不存在時,不能用點斜式方程表示直線,培養(yǎng)思維的嚴(yán)謹(jǐn)性,這時直線l與y軸平行,它上面的每一點的橫坐標(biāo)都等于x0,直線l的方程是:x=x0;通過學(xué)生的觀察討論總結(jié),明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎(chǔ)練習(xí),突破重難點。

  問題四:分別求經(jīng)過點且滿足下列條件的直線的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習(xí)]P95.1、2。

  [學(xué)生活動]學(xué)生獨立完成并展示或敘述,老師點評。

  [設(shè)計意圖]充分用好教材的例題和習(xí)題,因為這些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時反饋,便于反思本環(huán)節(jié)的教學(xué),指導(dǎo)下個環(huán)節(jié)的安排;突破重點內(nèi)容后,進入第三環(huán)節(jié)。

  (三)拓展知識,再獲新知----斜截式

  問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。

  (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。

  [學(xué)生活動]學(xué)生獨立完成后口述,教師板書。

  [設(shè)計意圖] 由一般到特殊再到一般,培養(yǎng)學(xué)生的推理能力,同時引出截距的概念及斜截式方程,強調(diào)截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數(shù)的關(guān)系。通過下面的基礎(chǔ)練習(xí),突破重點。

  [練習(xí)]P95.3。

  [設(shè)計意圖]充分用好教材習(xí)題,及時反饋本環(huán)節(jié)的教學(xué)情況,指導(dǎo)下個環(huán)節(jié)的安排。

  (四)小結(jié)引申,思維延續(xù)----兩點式

  課堂小結(jié) 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)

  2、哪些地方還沒有學(xué)好?

  問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。

  (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。

  [學(xué)生活動]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進展過程,有時間的話,可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式;沒時間就布置分層作業(yè)。

  [設(shè)計意圖](1)小題與上一節(jié)的平行綜合,學(xué)生應(yīng)該有思路求出方程;(2)小題解決方法較多,預(yù)設(shè)有利用公式法、等斜率法、待定系數(shù)法,讓好一點的學(xué)生有一些發(fā)散思維的機會,以及課后學(xué)習(xí)的空間,使探究氣氛有一點高潮。另外也為下節(jié)課研究直線的兩點式方程作了重要的準(zhǔn)備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設(shè)計意圖]通過分層作業(yè),做到因材施教,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,讓每一個學(xué)生都得到符合自身實踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展。

  四、教學(xué)特點分析

  (一)實例引導(dǎo)。在字母運算、公式推導(dǎo)之前,總是用實例作為鋪墊,使學(xué)生有學(xué)習(xí)知識的可能和興趣,關(guān)注學(xué)困生的成長與發(fā)展。

  (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問的方式敘述所學(xué)內(nèi)容,如:1.直角坐標(biāo)系內(nèi)的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負(fù)數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學(xué)過的一次函數(shù)有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話與交流活動。

  (三)注重自主探究。設(shè)計問題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區(qū)上,布設(shè)了由淺入深的學(xué)習(xí)環(huán)境突破重點、難點,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程。設(shè)計了兩次思維發(fā)散點,分別是問題二和問題六的第(2)問,要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng)造充分的探究空間,學(xué)生在交流成果的過程中,高效的完成教學(xué)任務(wù)。

高中數(shù)學(xué)說課稿 篇7

  一、教材分析

  本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學(xué)生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。

  從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點,也是本章內(nèi)容的難點之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計學(xué)的重要基礎(chǔ)。

  二、教學(xué)目標(biāo)

  根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點確定本節(jié)課的教學(xué)目標(biāo)如下:

  知識與技能:

  1. 知道最小二乘法和回歸分析的思想;

  2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

  過程與方法:

  經(jīng)歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數(shù)學(xué)應(yīng)用和使用技術(shù)的意識。

  情感態(tài)度與價值觀

  通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

  三、重點難點分析:

  根據(jù)目標(biāo)分析,確定教學(xué)重點和難點如下:

  教學(xué)重點:

  1. 知道最小二乘法和回歸分析的思想;

  2.會求回歸直線

  教學(xué)難點:

  建立回歸思想,會求回歸直線

  四、教學(xué)設(shè)計

  提出問題

  理論探究

  驗證結(jié)論

  小結(jié)提升

  應(yīng)用實踐

  作業(yè)設(shè)計

  教學(xué)環(huán)節(jié)

  內(nèi)容及說明

  創(chuàng)設(shè)情境

  探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題與引導(dǎo)設(shè)計

  師生活動

  設(shè)計意圖

  問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關(guān)還是負(fù)相關(guān)?

  教師提問,學(xué)生

  通過動手操作得

  出散點圖并回答

  以舊“探”新:對舊的知識進行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。

  教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據(jù)得出的散點圖,思考下面的問題2.

  問題2. 甲同學(xué)判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,

  乙,丙三個同學(xué)的判斷有什么看法?

  學(xué)生能夠表達自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認(rèn)為甲乙丙三個同學(xué)的判斷都是對的,答案不唯一

  該問題具有探究性、啟發(fā)性和開放性。鼓勵學(xué)生大膽表達自己的看法。通過設(shè)計該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點圖中點的分布具有一定規(guī)律,體會觀測點與回歸直線的關(guān)系;進而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。

  問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多

  在小組討論的形式下和比較哪個小組提出的問題多,學(xué)生之間會充分的進行交流,提出問題

  通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。

  學(xué)生可能提出的問題:

 、贋槭裁醇住⒈瑢W(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較小?

  ②某人年齡在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?

  ③這些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?

 、茉鯓佑脭(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學(xué)生“火熱的思考”成果

【實用的高中數(shù)學(xué)說課稿范文匯編七篇】相關(guān)文章:

高中數(shù)學(xué)《點到直線的距離》說課稿范文01-29

高中數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》說課稿范文01-27

高中數(shù)學(xué)《什么是概率》說課稿范文01-27

高中數(shù)學(xué)說課稿《正弦定理》范文01-23

高中數(shù)學(xué)《簡單的線性規(guī)劃》說課稿范文01-30

高中數(shù)學(xué)《平面動點的軌跡》說課稿范文01-29

高中數(shù)學(xué)《棱錐的概念和性質(zhì)》說課稿范文01-28

高中數(shù)學(xué)必修五《正弦定理》說課稿10-29

人教版高中數(shù)學(xué)《函數(shù)的最大值和最小值》說課稿范文01-30

高中數(shù)學(xué)《一元二次不等式解法》說課稿范文01-28