- 相關(guān)推薦
小學(xué)數(shù)學(xué)概率統(tǒng)計(jì)的教育價(jià)值與教學(xué)例析論文
概率統(tǒng)計(jì)在小學(xué)數(shù)學(xué)教學(xué)中有其不可或缺的教育地位和獨(dú)有的教育價(jià)值。在教學(xué)實(shí)踐中,教師可通過典型的教學(xué)案例和有針對(duì)性的教學(xué)設(shè)計(jì),通過學(xué)生的自主學(xué)習(xí)和綜合實(shí)踐,幫助學(xué)生掌握概率統(tǒng)計(jì)這一認(rèn)識(shí)世界的工具,提高處理信息的能力;加深學(xué)生對(duì)數(shù)學(xué)思想方法的理解和掌握;提高學(xué)生的思維品質(zhì)和思維水平,幫助學(xué)生建立良好的科學(xué)品質(zhì)和辯證唯物主義觀念。
《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》首次將“統(tǒng)計(jì)觀念”作為義務(wù)教育階段數(shù)學(xué)課程的重要目標(biāo)之一,并將統(tǒng)計(jì)與概率作為數(shù)學(xué)教學(xué)的四個(gè)領(lǐng)域之一!读x務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011版)》還將原來的“統(tǒng)計(jì)觀念”提高為“數(shù)據(jù)分析觀念”,在過程性和應(yīng)用性等方面對(duì)小學(xué)數(shù)學(xué)概率統(tǒng)計(jì)的教學(xué)提出了更高的要求。雖然小學(xué)數(shù)學(xué)中概率統(tǒng)計(jì)的內(nèi)容相對(duì)偏少,難度相對(duì)較低,但作為小學(xué)數(shù)學(xué)教學(xué)的四個(gè)領(lǐng)域之一,概率統(tǒng)計(jì)有其不可忽視的教育價(jià)值和教育地位。
一、掌握認(rèn)識(shí)世界的工具,提高處理信息的能力
在報(bào)紙、電視等媒體中,經(jīng)常會(huì)出現(xiàn)“某臺(tái)風(fēng)使沿海地區(qū)受災(zāi)面積達(dá)60%”,“本月房產(chǎn)價(jià)格環(huán)比上漲4%”,“這場(chǎng)足球賽,巴西隊(duì)贏的可能性比較大”,“到這家商場(chǎng)買家電更劃算”等語言,這些都運(yùn)用了大量的統(tǒng)計(jì)數(shù)據(jù)和概率統(tǒng)計(jì)術(shù)語。生活已經(jīng)先于數(shù)學(xué)課程將概率統(tǒng)計(jì)知識(shí)推到了學(xué)生面前,學(xué)生也了解基本的、簡(jiǎn)單的概率統(tǒng)計(jì)知識(shí),但學(xué)生真正理解了這些數(shù)學(xué)知識(shí)嗎?比如例子中的三個(gè)百分?jǐn)?shù)60%、4%、80%,它們各自有什么意義,有區(qū)別和聯(lián)系嗎?解答這些問題就需要進(jìn)行系統(tǒng)的學(xué)習(xí),這也是概率統(tǒng)計(jì)的教育價(jià)值和目的所在。
現(xiàn)實(shí)生活中還存在大量的數(shù)據(jù)或者需要通過數(shù)據(jù)處理才能解決的問題。面對(duì)這些數(shù)據(jù),為了更好地認(rèn)識(shí)世界,人們就要學(xué)會(huì)處理各種信息并分析和判斷!读x務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011版)》提出了“了解在現(xiàn)實(shí)生活中有許多問題應(yīng)當(dāng)先做調(diào)查研究,收集數(shù)據(jù),通過分析做出判斷,體會(huì)數(shù)據(jù)中蘊(yùn)涵的信息;了解對(duì)于同樣的數(shù)據(jù)可以有多種分析的方法,需要根據(jù)問題的背景選擇合適的方法。”
【例1】 學(xué)校要發(fā)校服,那我們班需要大號(hào)、中號(hào)、小號(hào)的校服各多少套?
首先引導(dǎo)學(xué)生經(jīng)歷這樣一個(gè)思維過程:
(1)大號(hào)、中號(hào)、小號(hào)的校服各自對(duì)應(yīng)的身高是多少?
(2)我們班每個(gè)同學(xué)的身高是多少?
(3)身高在各對(duì)應(yīng)范圍內(nèi)的同學(xué)人數(shù)是多少?
(4)如何統(tǒng)計(jì)全班同學(xué)的身高?
(5)如何又快又準(zhǔn)地處理統(tǒng)計(jì)結(jié)果?
(1)(2)(3)是讓學(xué)生意識(shí)到需要進(jìn)行調(diào)查統(tǒng)計(jì),(4)(5)則是需要學(xué)生收集、分析和處理數(shù)據(jù),讓學(xué)生在討論過程中選擇合適的方法,如統(tǒng)計(jì)表、條形圖或餅圖等。
概率統(tǒng)計(jì)是認(rèn)識(shí)和理解隨機(jī)現(xiàn)象的鑰匙,掌握概率統(tǒng)計(jì)方法,通過數(shù)據(jù)的收集、整理和分析,可以使我們對(duì)事物的判斷與選擇盡可能正確,可以使我們?cè)谏詈凸ぷ髦猩俜稿e(cuò)誤,贏得主動(dòng)。因此, “概率統(tǒng)計(jì)是一門可以使人變聰明的技術(shù)”,是使人能夠更好地了解和把握社會(huì)現(xiàn)象的一門學(xué)科。
二、體會(huì)概率思想方法,加深對(duì)數(shù)學(xué)的整體理解
數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的學(xué)科。除概率論與數(shù)理統(tǒng)計(jì)外,數(shù)學(xué)的其余分支研究的都是確定性現(xiàn)象。正因?yàn)楦怕式y(tǒng)計(jì)不同于研究必然現(xiàn)象的其他數(shù)學(xué)分支,并且在理論和思想方法上具有獨(dú)特性,它的教育價(jià)值也越來越被人們認(rèn)可。
【例2】 一個(gè)布袋里有3個(gè)紅球和1個(gè)黃球。我們一共摸20次球,每次摸后都放回,游戲規(guī)則:如果摸到紅球的次數(shù)多,就算女生贏,如果摸到黃球的次數(shù)多,就算男生贏。
(1)這個(gè)游戲公平嗎?為什么?
(2)女生一定會(huì)贏嗎?
(3)怎樣才能讓男生贏的可能性相對(duì)更大?又怎樣才能讓女生贏的可能性相對(duì)更大?
問題(1)基于生活常識(shí),學(xué)生基本都認(rèn)為游戲不公平,因?yàn)榧t球個(gè)數(shù)較多,所以女生贏的可能性更大,這也正是概率思想的核心,即單一試驗(yàn)的偶然性與大量重復(fù)試驗(yàn)所體現(xiàn)的必然性。問題(2)的提出能促使一部分學(xué)生思考:女生一定會(huì)贏嗎?事實(shí)上,在不少課堂試驗(yàn)中均出現(xiàn)這種“意外”情況:男生贏了。這是因?yàn)槟骋皇录l(fā)生的可能性雖然大,但并不能遮蓋或替代另一小概率事件發(fā)生的可能性。問題(3)需要更深層次的知識(shí),可以讓學(xué)生課后進(jìn)行多次試驗(yàn),摸球次數(shù)分別為1、10、20、50、100……可以發(fā)現(xiàn),摸球次數(shù)越少,男生贏的可能性相對(duì)更大,反之女生贏的可能性相對(duì)更大。
三、拓展思維方式、提升思維水平
概率統(tǒng)計(jì)的思維方式能夠拓展學(xué)生的思維廣度,打破原有思維方式對(duì)學(xué)生的束縛,進(jìn)而全面提升學(xué)生的思維水平,因此它是人們不可缺少的思維模式。
統(tǒng)計(jì)方法是一種實(shí)證主義方法,是歸納與演繹的有機(jī)結(jié)合,它通過大量的隨機(jī)試驗(yàn)從偶然性中發(fā)現(xiàn)規(guī)律性、必然性。探究過程中采用的統(tǒng)計(jì)歸納、邏輯演繹等具有或然性特征,但這種或然性又具有一定的概率保證,也就是在一定概率程度上對(duì)命題進(jìn)行“證明”。
例如概率統(tǒng)計(jì)中著名的“蒲豐投針問題”,即通過對(duì)隨機(jī)試驗(yàn)及其數(shù)據(jù)的觀察、分析、處理,求出圓周率π的近似值。這一實(shí)驗(yàn)法開創(chuàng)了用偶然性方法去攻克確定性問題的先河,將必然數(shù)學(xué)與或然數(shù)學(xué)聯(lián)系在了一起。
雖然在小學(xué)階段無法學(xué)習(xí)復(fù)雜的“蒲豐投針問題”,但依然可以運(yùn)用這種思想方法設(shè)計(jì)一些概率統(tǒng)計(jì)問題,從而達(dá)到提升學(xué)生思維水平的目的。
【例3】 一個(gè)不透明的袋中裝有4個(gè)紅球和1個(gè)白球共5個(gè)球(事先不告訴學(xué)生具體的白球與紅球數(shù)目,只告訴他們袋中球的顏色為白色和紅色),讓學(xué)生通過足夠多次有放回的摸球,統(tǒng)計(jì)摸出白球與紅球的數(shù)量及各自所占比例,由此估計(jì)袋中白球與紅球數(shù)目的情況。
該問題的解決可以分為以下幾個(gè)層次。
(1)學(xué)生已有的經(jīng)驗(yàn)是“知道袋中球的顏色和數(shù)目的情況下,摸到哪種顏色球的概率較大,具體是多少”。本題可由已有的經(jīng)驗(yàn)出發(fā),引導(dǎo)學(xué)生思考、討論“在不看和不數(shù)袋子里球的顏色的前提下,如何估計(jì)袋中白球與紅球數(shù)量的情況”,啟發(fā)學(xué)生想到可以通過摸球得到數(shù)據(jù),進(jìn)一步由數(shù)據(jù)進(jìn)行估計(jì)。
(2)通過大量有放回的摸球試驗(yàn),學(xué)生發(fā)現(xiàn)每次摸出的球的顏色不確定,初步感受數(shù)據(jù)的隨機(jī)性。如果進(jìn)行足夠多的試驗(yàn),進(jìn)一步統(tǒng)計(jì)摸出的白球與紅球的數(shù)量,就可以估計(jì)袋中是白球多還是紅球多,在隨機(jī)性的基礎(chǔ)上體會(huì)規(guī)律性。
(3)在(2)的基礎(chǔ)上,隨著試驗(yàn)次數(shù)的增加,發(fā)現(xiàn)摸出白球的次數(shù)與摸出紅球的次數(shù)的比趨于穩(wěn)定,學(xué)生可以估計(jì)出袋中白球數(shù)量和紅球數(shù)量的比,進(jìn)一步體會(huì)規(guī)律性。估計(jì)出了袋中白球數(shù)量和紅球數(shù)量的比,并知道了袋中兩種顏色球的總數(shù),就可以估計(jì)白球和紅球各自的數(shù)量。
當(dāng)然,小學(xué)生無法用概率的方法進(jìn)行準(zhǔn)確、科學(xué)的推斷和預(yù)測(cè),只能是一些猜想,屬于沒有證明的合情推理。概率推理作為一種合情推理,是與代數(shù)推理、幾何推理同樣重要的一種推理形式。波利亞說過,合情推理是與邏輯推理一樣重要的推理,是更具創(chuàng)造性的推理。因此,經(jīng)過長(zhǎng)期的概率統(tǒng)計(jì)學(xué)習(xí),學(xué)生的合情推理能力自然可以得到相應(yīng)的提高。
四、培養(yǎng)良好的科學(xué)品質(zhì)和辯證唯物主義觀念
概率統(tǒng)計(jì)是在解決各種實(shí)際問題中發(fā)展起來的,其解決問題的方法和結(jié)果的呈現(xiàn)方式也較為特別,對(duì)于學(xué)生科學(xué)品質(zhì)的培養(yǎng)和辯證唯物主義思想的形成有巨大的幫助。
從概率統(tǒng)計(jì)的角度去觀察、探索和解釋現(xiàn)實(shí)生活或科學(xué)領(lǐng)域中的隨機(jī)事件,能夠?qū)ΜF(xiàn)實(shí)世界中的很多事情形成自己的看法,有助于培養(yǎng)學(xué)生的探索精神。因此概率統(tǒng)計(jì)的學(xué)習(xí)不能沿用傳統(tǒng)的記憶和機(jī)械的解題訓(xùn)練方法,同時(shí),概率統(tǒng)計(jì)的隨機(jī)性使得解決問題的模式具有多樣性和不重復(fù)性,需要不斷創(chuàng)建新模式來解決新問題,有益于學(xué)生創(chuàng)新精神的培養(yǎng)和創(chuàng)造能力的提高?茖W(xué)應(yīng)用信息作出正確決策是概率統(tǒng)計(jì)的主要任務(wù),概率統(tǒng)計(jì)能教會(huì)學(xué)生合理運(yùn)用規(guī)律作出正確的決策,培養(yǎng)自身的決策能力和決策意識(shí)。解決概率統(tǒng)計(jì)問題時(shí),常常需要多人共同參與,解決問題的過程就是分工協(xié)作、相互配合的過程,這也有利于培養(yǎng)學(xué)生的合作精神。概率統(tǒng)計(jì)告訴我們,事物的偶然中蘊(yùn)含必然,必然中又帶有偶然,這一辯證關(guān)系是事物的固有屬性,也是我們思考和研究問題所必須持有的思想觀念。
【例4】 在可能性的教學(xué)中,可以設(shè)計(jì)如下問題:
(1)在一個(gè)布袋中有1個(gè)紅球和1個(gè)白球,從中任意摸一個(gè)球,摸到紅球與白球的可能性相等嗎?
(2)如果袋中有2個(gè)紅球和1個(gè)白球,從中任意摸一個(gè)球,摸到紅球與白球的可能性相等嗎?
(3)如果袋中有9個(gè)紅球和1個(gè)白球,從中任意摸一個(gè)球,能摸到白球嗎?
(4)如果袋中有99個(gè)紅球和1個(gè)白球,從中任意摸一個(gè)球,能摸到白球嗎?
(5)如果袋中有999個(gè)紅球和1個(gè)白球,從中任意摸一個(gè)球,能摸到白球嗎?
(6)如果袋中有無數(shù)個(gè)紅球和1個(gè)白球(假設(shè)袋子無限大),從中任意摸一個(gè)球,能摸到白球嗎?
從簡(jiǎn)單的問題出發(fā),通過數(shù)據(jù)的變化,不斷激發(fā)學(xué)生的思維。學(xué)生在思考、討論甚至激烈的辯論中得出正確答案。當(dāng)袋中有99個(gè)紅球和1個(gè)白球時(shí),學(xué)生還能肯定地說“能摸到白球”,當(dāng)袋中有999個(gè)紅球和1個(gè)白球時(shí),學(xué)生已經(jīng)對(duì)自己的答案(能摸到白球)產(chǎn)生懷疑,這時(shí)教師的引導(dǎo)和對(duì)概念的辨析就能加深學(xué)生對(duì)可能性這一概念的理解。
對(duì)于小學(xué)生來說,統(tǒng)計(jì)與概率這一領(lǐng)域的內(nèi)容是充滿趣味和吸引力的。概率實(shí)驗(yàn)的過程就是對(duì)思維挑戰(zhàn)的過程,也是一個(gè)非常有趣的過程:親自動(dòng)手收集、處理及呈現(xiàn)數(shù)據(jù)是一個(gè)活動(dòng)性很強(qiáng)并且充滿挑戰(zhàn)和樂趣的過程。統(tǒng)計(jì)與概率涉及整數(shù)、分?jǐn)?shù)、比值等基礎(chǔ)知識(shí),需要運(yùn)用計(jì)算、推理等基本能力,蘊(yùn)含了分類、歸納、數(shù)形結(jié)合等數(shù)學(xué)思想方法,學(xué)習(xí)新知的同時(shí)還要能運(yùn)用舊知,自然就能提高學(xué)生發(fā)現(xiàn)問題、解決問題的能力。學(xué)好概率統(tǒng)計(jì),還有助于培養(yǎng)學(xué)生以隨機(jī)觀念來認(rèn)識(shí)和理解世界,形成正確的世界觀和方法論。概率統(tǒng)計(jì)在生活和數(shù)學(xué)中扮演著重要的角色,充分認(rèn)識(shí)概率統(tǒng)計(jì)課程的教育價(jià)值,發(fā)揮它的育人功能,必能促進(jìn)學(xué)生綜合素質(zhì)的提高。
【小學(xué)數(shù)學(xué)概率統(tǒng)計(jì)的教育價(jià)值與教學(xué)例析論文】相關(guān)文章:
概率統(tǒng)計(jì)中融入數(shù)學(xué)建模思想的教學(xué)探索論文10-22
論文:小學(xué)數(shù)學(xué)概念教學(xué)例談06-25
小學(xué)數(shù)學(xué)教育教學(xué)論文07-22
小學(xué)數(shù)學(xué)教育教學(xué)論文05-07
簡(jiǎn)析高校公共藝術(shù)教育價(jià)值取向的基本維度論文06-16
教育論文:小學(xué)數(shù)學(xué)多媒體導(dǎo)入新課例談10-17
簡(jiǎn)析小學(xué)數(shù)學(xué)建模的策略論文05-23