久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

數(shù)學(xué)哪些知識點最容易出證明題

時間:2020-12-19 15:37:34 考研數(shù)學(xué) 我要投稿

數(shù)學(xué)哪些知識點最容易出證明題

  考研數(shù)學(xué)必考證明題,證明題怎么證?都會出什么題?下面就綜合來看看考研數(shù)學(xué)證明題類別及證法。

數(shù)學(xué)哪些知識點最容易出證明題

  ☆題目篇☆

  考試難題一般出現(xiàn)在高等數(shù)學(xué),對高等數(shù)學(xué)一定要抓住重難點進(jìn)行復(fù)習(xí)。高等數(shù)學(xué)題目中比較困難的是證明題,在整個高等數(shù)學(xué),容易出證明題的地方如下:

  數(shù)列極限的證明

  數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。

  微分中值定理的相關(guān)證明

  微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強(qiáng),涉及到知識面廣,涉及到中值的等式主要是三類定理:

  1.零點定理和介質(zhì)定理;

  2.微分中值定理;

  包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。

  3.微分中值定理

  積分中值定理的作用是為了去掉積分符號。

  在考查的時候,一般會把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。

  方程根的問題

  包括方程根唯一和方程根的個數(shù)的討論。

  不等式的證明

  定積分等式和不等式的證明

  主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。

  積分與路徑無關(guān)的'五個等價條件

  這一部分是數(shù)一的考試重點,最近幾年沒設(shè)計到,所以要重點關(guān)注。

  ☆方法篇☆

  以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時候重點歸納這類題目的解法。那么,遇到這類的證明題,我們應(yīng)該用什么方法解題呢?

  結(jié)合幾何意義記住基本原理

  重要的定理主要包括零點存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論。

  知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。

  因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

  借助幾何意義尋求證明思路

  一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。

  再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。

  逆推法

  從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。

  在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

  對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

【數(shù)學(xué)哪些知識點最容易出證明題】相關(guān)文章:

考研數(shù)學(xué)中哪些知識點最容易出證明題01-17

2017年考研數(shù)學(xué)容易出證明題的6個知識點11-10

考研數(shù)學(xué)證明題知識點01-17

最容易學(xué)的樂器有哪些09-12

練習(xí)速錄最容易忽視哪些重點08-20

領(lǐng)班工作最容易犯哪些錯誤08-21

商務(wù)日語中哪些敬語最容易用錯08-23

餐飲管理者最容易忽略哪些細(xì)節(jié)08-22

創(chuàng)業(yè)公司最容易犯的錯誤有哪些02-09