久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學(xué)說課稿

時間:2024-07-21 10:54:46 金磊 高中說課稿 我要投稿

高中數(shù)學(xué)說課稿(通用20篇)

  作為一名為他人授業(yè)解惑的教育工作者,時常需要用到說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。如何把說課稿做到重點突出呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿,歡迎閱讀與收藏。

高中數(shù)學(xué)說課稿(通用20篇)

  高中數(shù)學(xué)說課稿 篇1

  我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊 第1.2節(jié)

  先對教材進(jìn)行分析

  教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

  地位和作用: 任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認(rèn)真探討教材,精心設(shè)計過程。

  教學(xué)重點:任意角三角函數(shù)的定義

  教學(xué)難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;

  學(xué)情分析:

  學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力

  1、初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2、我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。

  3、在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強(qiáng)必須在老師一定的指導(dǎo)下才能進(jìn)行

  針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標(biāo)如下

  知識目標(biāo):

 。1)任意角三角函數(shù)的定義;三角函數(shù)的'定義域;三角函數(shù)值的符號,

  能力目標(biāo):

  (1)理解并掌握任意角的三角函數(shù)的定義;

 。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

 。3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。

  德育目標(biāo):

  (1)學(xué)習(xí)轉(zhuǎn)化的思想

 。2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;

  針對學(xué)生實際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法

  教法學(xué)法:溫故知新,逐步拓展

 。1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴(kuò)展內(nèi)容,發(fā)展新知識,形成新的概念;

 。2)通過例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀性增強(qiáng)趣味性。

  教學(xué)過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強(qiáng),逐步推進(jìn)

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標(biāo)系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義

  給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

  具體教學(xué)過程安排

  引入: 復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學(xué)生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系, 把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。

  我們知道,隨著角的概念的推廣,研究角時多放在直角坐標(biāo)系里, 那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?

  引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標(biāo)來表示, 從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標(biāo)中進(jìn)行合理進(jìn)行定義了

  從而得到

  知識點一:任意一個角的三角函數(shù)的定義

  提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān)。

  精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

 。ù祟}由學(xué)生自己分析獨立動手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

  結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學(xué)生分析討論,得出結(jié)論

  知識點二:三個三角函數(shù)的定義域

  同時教師強(qiáng)調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

  解答中需要對變量的正負(fù)即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個知識點

  知識點三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系

  由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶

  例題2:已知A在第二象限且 sinA=0.2 求cosA,tanA

  求cosA,tanA

  綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結(jié)回顧課堂內(nèi)容

  課堂作業(yè)和課外作業(yè)以加強(qiáng)知識的記憶和理解

  課堂作業(yè)P16 1,2,4

  (學(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)

  課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)

  高中數(shù)學(xué)說課稿 篇2

  一、說教材:

  1、 地位及作用:

  “橢圓及其標(biāo)準(zhǔn)方程”是高中《解析幾何》第二章第七節(jié)內(nèi)容,是本書的重點內(nèi)容之一,也是歷年高考、會考的必考內(nèi)容,是在學(xué)完求曲線方程的基礎(chǔ)上,進(jìn)一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學(xué)習(xí)打好基礎(chǔ),因此本節(jié)內(nèi)容具有承前啟后的作用。

  2、 教學(xué)目標(biāo):

  根據(jù)《教學(xué)大綱》,《考試說明》的要求,并根據(jù)教材的具體內(nèi)容和學(xué)生的實際情況,確定本節(jié)課的教學(xué)目標(biāo):

 。1)知識目標(biāo):掌握橢圓的定義和標(biāo)準(zhǔn)方程,以及它們的應(yīng)用。

 。2)能力目標(biāo):

 。╝)培養(yǎng)學(xué)生靈活應(yīng)用知識的能力。

 。╞) 培養(yǎng)學(xué)生全面分析問題和解決問題的能力。

 。╟)培養(yǎng)學(xué)生快速準(zhǔn)確的運算能力。

 。3)德育目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合思想,類比、分類討論的思想以及確立從感性到理性認(rèn)識的辯證唯物主義觀點。

  3、 重點、難點和關(guān)鍵點:

  因為橢圓的定義和標(biāo)準(zhǔn)方程是解決與橢圓有關(guān)問題的重要依據(jù),也是研究雙曲線和拋物線的基礎(chǔ),因此,它是本節(jié)教材的重點;由于學(xué)生推理歸納能力較低,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節(jié)課的難點;坐標(biāo)系建立的好壞直接影響標(biāo)準(zhǔn)方程的推導(dǎo)和化簡,因此建立一個適當(dāng)?shù)闹苯亲鴺?biāo)系是本節(jié)的關(guān)鍵。

  二、 說教材處理

  為了完成本節(jié)課的教學(xué)目標(biāo),突出重點、分散難點、根據(jù)教材的內(nèi)容和學(xué)生的實際情況,對教材做以下的'處理:

  1、學(xué)生狀況分析及對策:

  2、教材內(nèi)容的組織和安排:

  本節(jié)教材的處理上按照人們認(rèn)識事物的規(guī)律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下:

 。1)復(fù)習(xí)提問

  (2)引入新課

 。3)新課講解

 。4)反饋練習(xí)

 。5)歸納總結(jié)

  (6)布置作業(yè)

  三、 說教法和學(xué)法

  1、為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,是學(xué)生變被動學(xué)習(xí)為主動而愉快的學(xué)習(xí),引導(dǎo)學(xué)生自己動手,讓學(xué)生的思維活動在教師的引導(dǎo)下層層展開。請學(xué)生參與課堂。加強(qiáng)方程推導(dǎo)的指導(dǎo),是傳授知識與培養(yǎng)能力有機(jī)的溶為一體,為此,本節(jié)課采用“引導(dǎo)教學(xué)法”。

  2、利用電腦所畫圖形的動態(tài)演示總結(jié)規(guī)律。同時利用電腦的動態(tài)演示激發(fā)學(xué)生的學(xué)習(xí)興趣。

  四、 教學(xué)過程

  教學(xué)環(huán)節(jié)

  3、設(shè)a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。

  例1屬基礎(chǔ),主要反饋學(xué)生掌握基本知識的程度。

  例2可強(qiáng)化基本技能訓(xùn)練和基本知識的靈活運用。

  小結(jié)

  為使學(xué)生對本節(jié)內(nèi)容有一個完整深刻的認(rèn)識,教師引導(dǎo)學(xué)生從以下幾個方面進(jìn)行小結(jié)。

  1、橢圓的定義和標(biāo)準(zhǔn)方程及其應(yīng)用。

  2、橢圓標(biāo)準(zhǔn)方程中a,b,c諸關(guān)系。

  3、求橢圓方程常用方法和基本思路。

  通過小結(jié)形成知識體系,加深對本節(jié)知識的理解培養(yǎng)學(xué)生的歸納總結(jié)能力,增強(qiáng)學(xué)生學(xué)好圓錐曲線的信心。

  布置作業(yè)

 。1) 77頁——78頁 1,2,3,79頁 11

 。2) 預(yù)習(xí)下節(jié)內(nèi)容

  鞏固本節(jié)所學(xué)概念,強(qiáng)化基本技能訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),發(fā)現(xiàn)和彌補(bǔ)教學(xué)中的遺漏和不足。

  高中數(shù)學(xué)說課稿 篇3

  我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進(jìn)行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!

  根據(jù)以上分析,確立教學(xué)重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

  二、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點確定教學(xué)目標(biāo)如下:

  知識目標(biāo):

  1、了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系;

  2、初步領(lǐng)會“曲線的方程”與“方程的曲線”的.概念;

  3、學(xué)會根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;

  4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。

  能力目標(biāo):

  1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點的一一對應(yīng)關(guān)系的認(rèn)識;

  2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動過程,探索出結(jié)論,并能有條理的闡述自己的觀點;

  3、能用所學(xué)知識理解新的概念,并能運用概念解決實際問題,從中體會轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識。

  情感目標(biāo):

  1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;

  2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。

  三、重難點突破

  “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實際模型,積累了感性認(rèn)識的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識,又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學(xué)生在作業(yè)中容易犯想當(dāng)然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標(biāo)的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設(shè)計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會“二者”缺一不可。

  四、學(xué)情分析

  此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時容易產(chǎn)生的問題是,不理解“曲線上的點的坐標(biāo)都是方程的解”和“以這個方程的解為坐標(biāo)的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系時各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會,要求學(xué)生能答出曲線和方程間必須滿足兩個關(guān)系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關(guān)系的區(qū)別。

  高中數(shù)學(xué)說課稿 篇4

  說教材

 。1)地位和作用

  向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運算(運算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。

  平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識體系奠定了知識和方法基礎(chǔ)。

 。2)教學(xué)結(jié)構(gòu)的調(diào)整

  課本在這一部分內(nèi)容的教學(xué)為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點說明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時深化其認(rèn)知過程和探究過程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨立完成。

  (3)重點,難點,關(guān)鍵

  由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計的,盡管此時的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗,多數(shù)學(xué)生對向量的認(rèn)識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點。而解決這一難點的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對向量的理解。

  說教學(xué)目標(biāo)的確定

  根據(jù)本課教材的特點,新大綱對本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個方面確定了以下教學(xué)目標(biāo):

  (1)基礎(chǔ)知識目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據(jù)圖形判定向量是否平行,共線,相等。

 。2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問題,分析問題,解決問題的能力。

  (3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動中感受學(xué)習(xí)的樂趣。

  說教學(xué)方法的.選擇

 、窠虒W(xué)方法

  本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點和學(xué)生的實際情況在教學(xué)中突出以下兩點:

 。1)由教材的特點確立類比思維為教學(xué)的主線。

  從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運用類比作為思維的主線進(jìn)行教學(xué)。讓學(xué)生充分體會數(shù)學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過程。

 。2)由學(xué)生的特點確立自主探索式的學(xué)習(xí)方法

  通常學(xué)生對于概念課學(xué)起來很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表揚(yáng),多肯定來激勵他們的學(xué)習(xí)熱情。考慮到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識,所以在教學(xué)中我通過創(chuàng)設(shè)問題情境,啟發(fā)引導(dǎo)學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學(xué)的全過程,突出學(xué)生的主體作用。

 、蚪虒W(xué)手段

  本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計算機(jī)來輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機(jī)演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對概念的理解和難點的突破。

  四教學(xué)過程的設(shè)計

 、裰R引入階段———提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

  (1)創(chuàng)設(shè)情境——引入概念

  數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識并掌握數(shù)學(xué)。

  由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

 。2)觀察歸納——形成概念

  由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進(jìn)行設(shè)計,引導(dǎo)學(xué)生概括總結(jié)出本課新的知識點:向量的概念及其幾何表示。

 。3)討論研究——深化概念

  在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個問題:

  ①向量的要素是什么?

 、谙蛄恐g能否比較大。

 、巯蛄颗c數(shù)量的區(qū)別是什么?

  同時指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。

 、蛑R探索階段———探索平面向量的平行向量。相等向量等概念

 。1)總結(jié)反思——提高認(rèn)識

  方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行。長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等。平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

 。2)即時訓(xùn)練—鞏固新知

  為了使學(xué)生達(dá)到對知識的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計了一組即時訓(xùn)練題,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識。

 。劬毩(xí)1]判斷下列命題是否正確,若不正確,請簡述理由。

 、傧蛄颗c是共線向量,則A、B、C、D四點必在一直線上;

 、趩挝幌蛄慷枷嗟龋

 、廴我幌蛄颗c它的相反向量不相等;

 、芩倪呅蜛BCD是平行四邊形的充要條件是=;

 、菽0是一個向量方向不確定的充要條件;

 、薰簿的向量,若起點不同,則終點一定不同。

  [練習(xí)2]下列命題正確的是( )

  A。a與b共線,b與c共線,則a與c也共線

  B。任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點

  C。向量a與b不共線,則a與b都是非零向量

  D。有相同起點的兩個非零向量不平行

 、笾R應(yīng)用階段————共線向量,相等向量等概念的初步應(yīng)用

  在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個復(fù)雜圖形中觀察,辨認(rèn)平行,相等的有向線段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。

  例如圖所示,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)

  具體教學(xué)安排如下:

 。1)分析解決問題

  先引導(dǎo)學(xué)生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質(zhì):兩個向量只有當(dāng)它們的模相等,同時方向又相同時,才能稱它們相等。進(jìn)而進(jìn)行正確的辨認(rèn),直至最終解決問題。

  (2)歸納解題方法

  主要引導(dǎo)學(xué)生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相

  等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。

 、魧W(xué)習(xí),小結(jié)階段———歸納知識方法,布置課后作業(yè)

  本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識,技能,方法的一般規(guī)律,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。

  具體的教學(xué)安排如下:

  (1)知識,方法小結(jié)在知識層面上我首先引導(dǎo)學(xué)生回顧本節(jié)課的主要內(nèi)容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類比,加深對每個概念的理解。

  在方法層面上我將帶領(lǐng)學(xué)生回顧探索過程中用到的思維方法和數(shù)學(xué)方法如:

  類比,數(shù)形結(jié)合,等價轉(zhuǎn)化等進(jìn)行強(qiáng)調(diào)。

 。2)布置課后作業(yè)

  閱讀教材96至97頁內(nèi)容,整理課堂筆記,習(xí)題5.1第1,2,3題。

  高中數(shù)學(xué)說課稿 篇5

  1、對教材地位與作用的認(rèn)識

  在高中數(shù)學(xué)教學(xué)中,作為數(shù)學(xué)思想應(yīng)向?qū)W生滲透,強(qiáng)化的有:函數(shù)與方程思想;數(shù)形結(jié)合思想;分類討論思想;等價轉(zhuǎn)化及運動變化思想。不是所有的課都能把這些思想自然的容納進(jìn)去,但由于“曲線和方程”這一節(jié)在教材中的特殊地位,它把代數(shù)和幾何兩個單科自然而緊密地結(jié)合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“依形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,用代數(shù)的方法研究幾何問題。”曲線與方程”是解析幾何中最為重要的基本內(nèi)容之一。在理論上它是基礎(chǔ),在應(yīng)用上它是工具,對全部解析幾何的教學(xué)有著深遠(yuǎn)的影響,另外在高考中也是考察的重點內(nèi)容,尤其是求曲線的方程,學(xué)生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學(xué)習(xí)得入門之路。應(yīng)該認(rèn)識到這節(jié)“曲線和方程”得開頭課是解析幾何教學(xué)的“重頭戲”!

  2、教學(xué)目標(biāo)的確定及依據(jù)

  (大綱的要求)通過本小節(jié)的學(xué)習(xí),要使學(xué)生了解解析幾何的基本思想,了解用坐標(biāo)法研究幾何問題的初步知識和觀點,理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法。所以第一課我在教學(xué)目標(biāo)上是這樣設(shè)定的:

  1).了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系,領(lǐng)會“曲線的方程”與“方程的曲線”的概念及其關(guān)系,并能作簡單的判斷與推理;

  2).在形成概念的過程中,培養(yǎng)分析、抽象和概括等思維能力;

  3)會證明已知曲線的方程。

  本節(jié)課的教學(xué)目標(biāo)定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應(yīng)在學(xué)生的學(xué)習(xí)行為上,即要求學(xué)生能答出曲線與方程間必須滿足的兩個關(guān)系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實例進(jìn)一步明確這二者的區(qū)別。知識的學(xué)習(xí)與能力的培養(yǎng)是同步的,在具體操作上結(jié)合圖形分析與反例,來辨析“兩個關(guān)系”之間的區(qū)別,從認(rèn)識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養(yǎng)學(xué)生分析、抽象、概括的思維能力。會證明已知曲線的方程就能更進(jìn)一步的理解曲線和方程概念的含義并為下節(jié)課求曲線的方程打基礎(chǔ)。

  3、如何突破重難點

  本小節(jié)的重點是理解曲線與方程的有關(guān)概念與相互聯(lián)系,以及求曲線方程的方法、步驟只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進(jìn)一步學(xué)好后面的內(nèi)容曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當(dāng)難度,對學(xué)生理解上可能遇到的問題是學(xué)生不理解“曲線上的點的坐標(biāo)都是方程的解”和”“以這個方程的解為坐標(biāo)的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系各自所起的作用。有的學(xué)生只從字面上死記硬背;有的學(xué)生甚至誤以為這兩句話是同義反復(fù)。要突破這一點,關(guān)鍵在于利用充要條件,函數(shù)圖象,直線和方程,軌跡等知識,正反兩方面說明問題。

  本節(jié)課的難點在于對定義中為什么要規(guī)定兩個關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個都將擴(kuò)大概念的外延。

  4、對教學(xué)過程的設(shè)計

  今天要講的“曲線和方程”這部分教材的內(nèi)容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進(jìn)行教學(xué),具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關(guān)系;第二課時講解求曲線的方程一般方法,第三課時為習(xí)題課,通過練習(xí)來總結(jié)、鞏固和深化本節(jié)知識。如果以為學(xué)生不真正領(lǐng)悟曲線和方程得關(guān)系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個基本概念得教學(xué),這不能不說是一種“舍本逐末”得偏見。

  在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學(xué)生所理解,因而教材中從直線開始,多次,重復(fù)地闡述,這說明其重要性同時也說明理解它,掌握它確實需要一個過程數(shù)學(xué)本身是很抽象,把數(shù)學(xué)和實際問題相結(jié)合才能激發(fā)學(xué)生的學(xué)習(xí)興趣,真正達(dá)到素質(zhì)教育的要求。根據(jù)以上考慮,確定了這節(jié)課教學(xué)過程的基本線索是:實際問題引入,提出課題→運用反例,揭示內(nèi)涵→討論歸納,得出定義→集合表述,強(qiáng)化理解→知識應(yīng)用,反復(fù)辨析。

  教材的編寫也往往體現(xiàn)著教法,例如,本節(jié)一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關(guān)系!睂W(xué)生已經(jīng)有了用方程(有時用函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識,在本節(jié)教學(xué)中充分發(fā)揮這些感性認(rèn)識的作用。從人造地球衛(wèi)星運行的軌道等生動形象的實際問題引入,引起學(xué)生的興趣和好奇心以及對數(shù)學(xué)的'應(yīng)用有了更高的認(rèn)識,更激發(fā)他們進(jìn)一步學(xué)好數(shù)學(xué)的決心。(具體……)提出課題。運用學(xué)生熟知的知識,1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點和方程的解之間的關(guān)系,為形成曲線和方程的概念提供了實際模型,但是如果就此而由教師直接給出結(jié)論,那就不僅會失去開發(fā)學(xué)生思維的機(jī)會,影響學(xué)生的理解,而且會使教學(xué)變得枯燥乏味,抑制了學(xué)生學(xué)習(xí)的主動性和積極性,接著用反例來突破難點。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標(biāo)的點不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點坐標(biāo)就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學(xué)生對概念表述的嚴(yán)格性進(jìn)行探索,學(xué)生自已認(rèn)識曲線和方程的概念必須要具備的兩個關(guān)系,培養(yǎng)學(xué)生分析,歸納問題的能力,自然得出定義。并且把這個關(guān)系板書到黑板上,以示這就是這節(jié)課的重點。為了在重難點有所突破后強(qiáng)化其認(rèn)識,又用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  然后通過運用與練習(xí),糾正錯誤的認(rèn)識,促使對概念的正確理解,通過反復(fù)重現(xiàn),可以不斷領(lǐng)悟,加強(qiáng)識記。所以安排了例1,例2(見課件)目的也在于幫助學(xué)生正確理解概念,通過解題辨析“兩個關(guān)系”,實現(xiàn)本節(jié)課的教學(xué)目標(biāo),為此題目中的“曲線”和“方程”都力求簡單,由此得出點在曲線上的充要條件。

  曲線是符合某種條件的點的軌跡,為了下節(jié)課“求曲線的方程”的教學(xué),安排了例3(見課件)證明曲線的方程,增加學(xué)生的感性認(rèn)識,由于教材上有嚴(yán)謹(jǐn)?shù)淖C明過程,讓學(xué)生閱讀并總結(jié)證明已知曲線的方程的方法和步驟,上升到理論上,可以培養(yǎng)學(xué)生獨立思考,閱讀歸納的能力。為了讓學(xué)生更深入的理解這節(jié)課的主要內(nèi)容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習(xí):(略)簡單評講后小結(jié)本課的主要內(nèi)容,進(jìn)一步強(qiáng)化“曲線和方程”概念中兩個關(guān)系缺一不可,只有符合關(guān)系1)2)才能進(jìn)行數(shù)與形的轉(zhuǎn)化。由于下節(jié)課的內(nèi)容是求曲線的方程,特地安排了一個思考探索題。

  5、對學(xué)生學(xué)習(xí)活動的引導(dǎo)和組織

  教案的設(shè)計與教案的實施往往有一定的距離,本節(jié)課有著概念性強(qiáng),思維量大,例題與練習(xí)題不多的特點,這就決定了整節(jié)課將以學(xué)生的觀察、思考、討論為主,通過提問,舉例,啟發(fā),互動完成教學(xué),在具體操作上比較靈活,視學(xué)生的具體情況而定,把握學(xué)生的思維規(guī)律于數(shù)學(xué)思想的基本方法。例如,在概念教學(xué)中引導(dǎo)學(xué)生看反例,通過正反對比的方法,當(dāng)學(xué)生觀察了例1回答不清為什么,可以舉出幾個點的坐標(biāo)作檢驗,這就是”從特殊到一般“的方法:或引導(dǎo)學(xué)生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發(fā)方法符合學(xué)生的認(rèn)識規(guī)律,學(xué)生的認(rèn)識活動就會順利展開,而且在認(rèn)知的過程中訓(xùn)練了探索的能力。強(qiáng)化數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,完善學(xué)生的數(shù)學(xué)的結(jié)構(gòu),讓學(xué)生動手、動腦,以及觀察、聯(lián)想、猜測、歸納等合理推理,鼓勵學(xué)生多向思維、積極思考,勇于探索,從中培養(yǎng)學(xué)生合情推理能力,數(shù)學(xué)交流與合作能力以及主動參與的精神。

  高中數(shù)學(xué)說課稿 篇6

  一、 說教材

 。ㄒ唬┙滩牡牡匚缓妥饔

  本節(jié)內(nèi)容著重介紹了三角形的三種特殊線段,已學(xué)過的過直線外一點作已知直線的垂線、線段的中點、角的平分線等知識是學(xué)習(xí)本節(jié)新知識的基礎(chǔ),其中三角形的高學(xué)生從小學(xué)起已開始接觸,教材從學(xué)生已有認(rèn)知出發(fā),從高入手,利用圖形,給高作了具體定義,使學(xué)生了解三角形的高為線段,進(jìn)而引出三角形的另外幾種特殊線段——中線、角平分線。通過本節(jié)內(nèi)容學(xué)習(xí),可使學(xué)生掌握三角形的高、中線、角平分線與垂線、角平分線的聯(lián)系與區(qū)別。通過學(xué)習(xí)作圖、觀察與探究,會發(fā)現(xiàn)三角形的三條高所在的直線、三條角平分線、三條中線都各自交于一點,這為以后三角形的內(nèi)心、重心等知識的學(xué)習(xí)打下一定的基礎(chǔ),另外,本節(jié)內(nèi)容也是日后學(xué)習(xí)等腰三角形等特殊三角形的墊腳石。故學(xué)好本節(jié)內(nèi)容是十分必要的。因此,對三角的高、中線、角平分線定義的理解及畫法的掌握是本節(jié)教學(xué)的重點,而三角形的高由于三角形的形狀改變而使其位置呈現(xiàn)多樣性,學(xué)生難以掌握,故在各類三角形中作出它們是本課的難點。

  (二)教學(xué)目標(biāo)分析

  本節(jié)課的教學(xué)設(shè)計力圖體現(xiàn)“尊重學(xué)生,注重發(fā)展”的教學(xué)理念,著重培養(yǎng)和發(fā)展學(xué)生基本作圖能力、語言表達(dá)能力、觀察能力等,根據(jù)這一目的確定本節(jié)教學(xué)目標(biāo)為:

  1、理解三角形的高、中線、角平分線的概念

  2、能正確作出一個三角形的高、中線、角平分線

  3、通過觀察、探究、畫一畫、折一折與描述等數(shù)學(xué)活動,感受數(shù)學(xué)語言的準(zhǔn)確性,提高觀察能力,語言表達(dá)能力,發(fā)展推理能力。

  重點:掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出它們

  難點:在各種三角形中作出它們的高

  二、 說教法

  1、情境創(chuàng)設(shè)法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng)設(shè)問題情境,并引導(dǎo)學(xué)生去簡單分析思路,目的使數(shù)學(xué)能密切聯(lián)系實際體現(xiàn)知識的形成和應(yīng)用過程。以實際問題為出發(fā)點和歸宿,更能貼近學(xué)生生活,以激發(fā)學(xué)生對學(xué)習(xí)本節(jié)內(nèi)容的求知欲,培養(yǎng)他們運用所學(xué)知識解決問題的能力。

  2、加強(qiáng)學(xué)生學(xué)習(xí)的主動性與探究性 在課堂中要充分調(diào)動學(xué)生自主學(xué)習(xí)的潛能,讓他們自由探究中發(fā)現(xiàn),從而發(fā)展他們的創(chuàng)新能力,讓他們感受到成功的喜悅。學(xué)生在畫一畫、折一折、何三個探究活動中體驗數(shù)學(xué)知識的形成過程。當(dāng)學(xué)生在探究過程中遇到困難時,才取消組建的交流與合作,充分發(fā)揮學(xué)生的團(tuán)隊作用,以更好地激發(fā)學(xué)生的積極思維,得到更大的收獲。

  3、運用多媒體等作為教輔工具,增強(qiáng)學(xué)生的直觀感受,掃除學(xué)生從形象思維難以跨越到抽象思維的障礙,突出重點,突破難點。

  三、說學(xué)法

  1、本節(jié)重點是三角形的三種重要線段,難點是對三角形的角平分線、中線、高的準(zhǔn)確理解、作圖與正確運用,而突破難點的關(guān)鍵是運用好數(shù)形結(jié)合的數(shù)學(xué)思想從畫圖入手,從大量的活動入手獲得三種線段的直觀形象,進(jìn)一步架起數(shù)與形之間的橋梁,加強(qiáng)知識間的相互聯(lián)系。

  2、小組討論、合作探究,既可讓學(xué)生互相啟發(fā),互相促進(jìn),積極交流,表達(dá)思想又可促進(jìn)數(shù)學(xué)思考,擴(kuò)大和加深對問題的認(rèn)識,本節(jié)課中我讓學(xué)生以小組進(jìn)行探究,歸納圖形特征,做到仔細(xì)觀察,大膽探索,勇于發(fā)現(xiàn),抽象概括。讓學(xué)生通過探索活動來發(fā)現(xiàn)結(jié)論,經(jīng)歷知識的“再發(fā)現(xiàn)”過程,從而改變學(xué)生學(xué)習(xí)的方式,發(fā)展創(chuàng)新思維能力。

  四、說教學(xué)過程:

  1、創(chuàng)設(shè)問題情境,引出新知: 從生活實例引出新問題,調(diào)動學(xué)生學(xué)習(xí)積極性

  2、預(yù)習(xí)檢查:以題組的形勢

  考點1:三角形的高

  1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.

  2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.

  3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說話中錯誤的是( )

  A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高

  7.1.2

  圖7.1.2-1 圖7.1.2-2 圖7.1.2-3

  4.如果一個三角形的三條高的交點恰是三角形的一個頂點,那么這個三角形是( )

  A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定

  5.三角形的三條高的交點一定在( )

  A.三角形內(nèi)部 B.三角形的外部 C.三角形的內(nèi)部或外部 D.以上答案都不對

  考點2:三角形的中線與角平分線

  6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.

 。2)AE平分∠BAC,交BC于E點,則AE叫做△ABC的________,∠________=∠________=7.1.2∠________.

 。3)若AF=FC,則△ABC的中線是________,S△ABF=________.

 。4)若BG=GH=HF,則AG是________的中線,AH是________的中線.

  圖7.1.2-5 圖7.1.2-6 圖7.1.2-7

  7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線,∠ACB=60°,那么∠EDC=______度.

  8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2∠ABC,則AD是△ABC的________線,BN是△ABC的________,

  ND是△BNC的________線.

  9.下列判斷中,正確的個數(shù)為( )

  (1)D是△ABC中BC邊上的一個點,且BD=CD,則AD是△ABC的中線

 。2)D是△ABC中BC邊上的一個點,且∠ADC=90°,則AD是△ABC的.高

 。3)D是△ABC中BC邊上的一個點,且∠BAD=7.1.2∠BAC,則AD是△ABC的角平分線

 。4)三角形的中線、高、角平分線都是線段

  A.1 B.2 C.3 D.4

  3、探究活動1:探究三角形的高,師提出問題,生獨立解答,教師關(guān)注學(xué)生對高和邊的對應(yīng)關(guān)系是否明確,并結(jié)合圖形引出三角形高的定義,并且利用圖形,讓生用語言描述,師加以修正,目的發(fā)展學(xué)生的觀察力與語言表述能力。在此基礎(chǔ)上讓學(xué)生明確三角形的高是一條線段。為了培養(yǎng)學(xué)生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵。

  在活動中,師應(yīng)重點關(guān)注:

 、賹W(xué)生能否多方位的加以探究

 、趯W(xué)生能否用流利的語言描述自己的發(fā)現(xiàn)

  ③學(xué)生能否對不同的觀點進(jìn)行質(zhì)疑,感受數(shù)學(xué)結(jié)論的正確性。之后設(shè)計的是鞏固性練習(xí),通過學(xué)生練習(xí),對三角形高的的有關(guān)知識加以鞏固,讓學(xué)生從運用所學(xué)知識解決問題的過程,獲得成功的體驗,從而激發(fā)他們學(xué)習(xí)的積極性。

  3、探究活動2 : 探究三角形的中線:學(xué)生在畫一畫中體會三角形中線的定義,培養(yǎng)學(xué)生動腦、動手能力,語言表達(dá)能力。

  4、探究活動3:探究三角形的角平分線。首先讓學(xué)生折一折,在動手操作中體會折痕是否平分三角形的內(nèi)角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵。從而很好的培養(yǎng)了學(xué)生的動手操作和探究能力。

  5、練習(xí)鞏固,深化拓展

  先以搶答形式解決問題1、問題2,讓學(xué)生利用所學(xué)知識,進(jìn)一步鞏固三角形的高、中線、角平分線的有關(guān)概念,提高學(xué)生獨立解決問題的能力。拓展練習(xí)是一個綜合性題目,一方面引導(dǎo)學(xué)生從復(fù)雜圖形中抽取基本圖形,從而加強(qiáng)學(xué)生對概念的掌握,進(jìn)一步發(fā)展學(xué)生的思維,拓展能力,運用以增強(qiáng)直觀性。

  6、感悟與收獲:進(jìn)一步提升學(xué)生對知識點理解。

  7、作業(yè)布置:讓學(xué)生運用數(shù)學(xué)知識解決生活實例,是讓學(xué)生感受數(shù)學(xué)和生活的聯(lián)系及數(shù)學(xué)在生活中的重要性,充分體現(xiàn)數(shù)學(xué)于生活又還原于生活。

  高中數(shù)學(xué)說課稿 篇7

  一、說教材

  1、從在教材中的地位與作用來看

  《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,并且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

  2、從學(xué)生認(rèn)知角度看

  從學(xué)生的思維特點看,很容易把本節(jié)資料與等差數(shù)列前n項和從公式的構(gòu)成、特點等方面進(jìn)行類比,這是進(jìn)取因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不一樣,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。

  3、學(xué)情分析

  教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴(yán)謹(jǐn)。

  4、重點、難點

  教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。

  教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。

  公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點也是難點。

  二、說目標(biāo)

  知識與技能目標(biāo):

  理解并掌握等比數(shù)列前n項和公式的.推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。

  過程與方法目標(biāo):

  經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事。

  情感與態(tài)度價值觀:

  經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。

  三、說過程

  學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:

  1、創(chuàng)設(shè)情境,提出問題

  在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。為什么呢

  設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的進(jìn)取性。故事資料緊扣本節(jié)課的主題與重點。

  此時我問:同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫出麥?倲(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

  設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識構(gòu)成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,構(gòu)成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。

  2、師生互動,探究問題

  在肯定他們的思路后,我之后問:1,2,22,…,263是什么數(shù)列有何特征應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)

  設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維本事的良好契機(jī)。

  經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。教師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢

  設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

  3、類比聯(lián)想,解決問題

  這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,

  那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。

  設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。

  對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)

  再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(引導(dǎo)學(xué)生得出公式的另一形式)

  設(shè)計意圖:經(jīng)過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和理解,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的本事。這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

  4、討論交流,延伸拓展

  高中數(shù)學(xué)說課稿 篇8

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

  奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。所以,本節(jié)課起著承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了必須數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維本事正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

  3、教學(xué)目標(biāo)

  基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計了這樣的教學(xué)目標(biāo):

  【知識與技能】

  1)能確定一些簡單函數(shù)的奇偶性。

  2)能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經(jīng)歷奇偶性概念的構(gòu)成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。

  【情感、態(tài)度與價值觀】

  經(jīng)過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。

  從課堂反應(yīng)看,基本上到達(dá)了預(yù)期效果。

  4、教學(xué)重點和難點

  重點:函數(shù)奇偶性的概念和幾何意義。

  幾年的教學(xué)實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學(xué)生容易出現(xiàn)下頭的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了研究函數(shù)定義域的問題。所以,在介紹奇、偶函數(shù)的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。所以,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點問題的講解。

  難點:奇偶性概念的數(shù)學(xué)化提煉過程。

  由于,學(xué)生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構(gòu)奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計為本節(jié)課的難點。

  二、教法與學(xué)法分析

  1、教法

  根據(jù)本節(jié)教材資料和編排特點,為了更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的進(jìn)取狀態(tài),從而培養(yǎng)思維本事。從課堂反應(yīng)看,基本上到達(dá)了預(yù)期效果。

  2、學(xué)法

  讓學(xué)生在觀察一歸納一檢驗一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、構(gòu)成的過程,從而使學(xué)生掌握知識。

  三、教學(xué)過程

  具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、構(gòu)成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下頭我對這六個環(huán)節(jié)進(jìn)行說明。

 。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣

  由于本節(jié)資料相對獨立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點明要學(xué)的資料,使學(xué)生的思維迅速定向,到達(dá)開始就明確目標(biāo)突出重點的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。經(jīng)過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。

 。ǘ┲笇(dǎo)觀察、構(gòu)成概念

  在這一環(huán)節(jié)中共設(shè)計了2個探究活動。

  探究1、2數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是經(jīng)過學(xué)生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點)對稱。之后學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體此刻自變量與函數(shù)值之間有何規(guī)律引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性,然后經(jīng)過解析式給出嚴(yán)格證明,進(jìn)一步說明這個特性對定義域內(nèi)任意一個都成立。最終給出偶函數(shù)(奇函數(shù))定義(板書)。

  在這個過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。

 。ㄈ⿲W(xué)生探索、領(lǐng)會定義

  探究3下列函數(shù)圖象具有奇偶性嗎?

  設(shè)計意圖:深化對奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)

 。ㄋ模┲R應(yīng)用,鞏固提高

  在這一環(huán)節(jié)我設(shè)計了4道題

  例1確定下列函數(shù)的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下頭完成。

  例1設(shè)計意圖是歸納出確定奇偶性的步驟:

  (1)先求定義域,看是否關(guān)于原點對稱;

  (2)再確定f(-x)=-f(x)還是f(-x)=f(x)。

  例2確定下列函數(shù)的奇偶性:

  例3確定下列函數(shù)的奇偶性:

  例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情景有幾種類型?

  例4(1)確定函數(shù)的.奇偶性。

  (2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設(shè)計意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

  在這個過程中,我重點關(guān)注了學(xué)生的推理過程的表述。經(jīng)過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識、理解和應(yīng)用都能提升很大一個高度,到達(dá)當(dāng)堂消化吸收的效果。

  (五)總結(jié)反饋

  在以上課堂實錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

  在本節(jié)課的最終對知識點進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用本事、增強(qiáng)錯誤的預(yù)見本事是提高數(shù)學(xué)綜合本事的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁練習(xí)第1-2題。

  選做題:課本第39頁習(xí)題1、3A組第6題。

  思考題:課本第39頁習(xí)題1、3B組第3題。

  設(shè)計意圖:面向全體學(xué)生,注重個人差異,加強(qiáng)作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步到達(dá)不一樣的人在數(shù)學(xué)上得到不一樣的發(fā)展。

  高中數(shù)學(xué)說課稿 篇9

  一、本節(jié)資料的地位與重要性

  "分類計數(shù)原理與分步計數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨特資料。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,經(jīng)過對這一節(jié)課的學(xué)習(xí),既能夠讓學(xué)生理解、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。

  二、關(guān)于教學(xué)目標(biāo)的確定

  根據(jù)兩個基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:

 。1)使學(xué)生正確理解兩個基本原理的概念;

 。2)使學(xué)生能夠正確運用兩個基本原理分析、解決一些簡單問題;

 。3)提高分析、解決問題的本事

 。4)使學(xué)生樹立"由個別到一般,由一般到個別"的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點。

  三、關(guān)于教學(xué)重點、難點的選擇和處理

  中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以兩個計數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學(xué)習(xí)本章的重點資料。

  正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,應(yīng)對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯誤的認(rèn)識,所以分類計數(shù)原理和分步計數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點。必需使學(xué)生認(rèn)清兩個基本原理的實質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生理解概念并對如何運用這兩個基本原理有正確清楚的認(rèn)識。教學(xué)中兩個基本問題的引用及引伸,就是為突破難點做準(zhǔn)備。

  四、關(guān)于教學(xué)方法和教學(xué)手段的選用

  根據(jù)本節(jié)課的資料及學(xué)生的實際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

  啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。貼合教學(xué)論中的自覺性和進(jìn)取性、鞏固性、可理解性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點撥的方法,啟發(fā)學(xué)生經(jīng)過主動思考、動手操作來到達(dá)對知識的"發(fā)現(xiàn)"和理解,進(jìn)而完成知識的內(nèi)化,使書本的知識成為自我的知識。

  電腦多媒體以聲音、動畫、影像等多種形式強(qiáng)化對學(xué)生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,能夠?qū)⒔處煹乃悸泛筒呗砸攒浖男问絹眢w現(xiàn),更好地為教學(xué)服務(wù)。

  五、關(guān)于學(xué)法的指導(dǎo)

  "授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)本事,增強(qiáng)學(xué)生的綜合素質(zhì),從而到達(dá)教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,經(jīng)過教師的啟發(fā)點撥,類比推理,在進(jìn)取的雙邊活動中,學(xué)生找到了解決疑難的方法。整個過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學(xué)生隨時對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)本事。

  六、關(guān)于教學(xué)程序的設(shè)計

 。ㄒ唬┱n題導(dǎo)入

  這是本章的第一節(jié)課,是起始課,講起始課時,把這一學(xué)科的資料作一個大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個初步的了解,并為下頭的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計數(shù)方法是本章資料的獨特性,從應(yīng)用的廣泛看學(xué)習(xí)本章資料的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理)

  這樣做,能使學(xué)生明白本節(jié)資料的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。

  (二)新課講授

  經(jīng)過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。

  緊跟著給出:

  引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不一樣的走法?

  引伸2:若完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法?

  這個問題的兩個引申由漸入深、循序漸進(jìn)為學(xué)生理解分類計數(shù)原理做好了準(zhǔn)備。

  板書分類計數(shù)原理資料:

  完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)

  此時,趁學(xué)生對于原理有了一個較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計數(shù)原理資料,啟發(fā)總結(jié)得下頭三點注意:(出示幻燈片)

 。1)各分類之間相互獨立,都能完成這件事;

 。2)根據(jù)問題的特點在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;

 。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。

  這樣做加深學(xué)生對分類計數(shù)原理的正確理解,突出了重點,突破了難點。

  接下來給出問題2:(出示幻燈片)

  由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不一樣的走法?

  提出問題:問題1與問題2同是研究從甲地到乙地的不一樣走法,請找出這兩個問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

  問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不一樣的顏色閃現(xiàn)出六種不一樣的走法,讓學(xué)生列式求出不一樣走法數(shù),并列舉所有走法。

  歸納得出:分步計數(shù)原理(板書原理資料)

  分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有

  N=m1×m2×…×mn

  種不一樣的'方法。

  同樣趁學(xué)生對定理有必須的認(rèn)識,引導(dǎo)學(xué)生分析分步計數(shù)原理資料,啟發(fā)總結(jié)得下頭三點注意:(出示幻燈片)

 。1)各步驟相互依存,僅有各個步驟完成了,這件事才算完成;

 。2)根據(jù)問題的特點在確定的分步標(biāo)準(zhǔn)下分步;

  (3)分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。

 。ㄈ⿷(yīng)用舉例

  教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。

  例2:由數(shù)字0,1,2,3,4能夠組成多少個三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個問題:

 。1)每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字)

 。2)023是一個三位數(shù)嗎?(百位上不能是0)

  (3)組成一個三位數(shù)需要怎樣做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字)

 。4)怎樣表述?

  教師巡視指導(dǎo)、并歸納

  解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計數(shù)原理,得到能夠組成的三位整數(shù)的個數(shù)是N=4×5×5=100.

  答:能夠組成100個三位整數(shù)。

 。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫忙學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問題本事有所提高。

  教師在第二個例題中給出板書示范,能幫忙學(xué)生進(jìn)一步加深對兩個基本原理實質(zhì)的理解,周密的研究,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的構(gòu)成有著進(jìn)取的促進(jìn)作用,也能夠為學(xué)生后面應(yīng)用兩個基本原理解排列、組合綜合題打下基礎(chǔ))

 。ㄋ模w納小結(jié)

  師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢?

  生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理。

  師:應(yīng)用兩個基本原理時需要注意什么呢?

  生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。

 。ㄎ澹┱n堂練習(xí)

  P222:練習(xí)1~4.學(xué)生板演第4題

 。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構(gòu)成給以提示)

 。┎贾米鳂I(yè)

  P222:練習(xí)5,6,7.

  補(bǔ)充題:

  1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?

 。ㄌ崾荆喊词簧蠑(shù)字的大小能夠分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))

  2.某學(xué)生填報高考志愿,有m個不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不一樣的志愿,求該生填寫志愿的方式的種數(shù)。

 。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)

  3.在所有的三位數(shù)中,有且僅有兩個數(shù)字相同的三位數(shù)共有多少個?

 。ㄌ崾荆耗軌蛴孟骂^方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個僅有兩個數(shù)字相同的三位數(shù))

  4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不一樣的選法?

 。ㄌ崾荆河捎8+5=13》10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自我夢想的成績。

  高中數(shù)學(xué)說課稿 篇10

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對數(shù)的運算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點。

  三、教學(xué)目的:

  1、經(jīng)過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

  2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、經(jīng)過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的本事。

  四、教學(xué)重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:

  1、類比:由數(shù)的加法運算類比向量的加法運算。

  2、探究:由力的'合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運用。

  3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。

  4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。

  3、歸納思想:主要體此刻以下三個環(huán)節(jié):

  ①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都能夠選用。

  ②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。

 、蹖ο蛄考臃ǖ慕Y(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過程:

  1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過位移的合成,可是并沒有構(gòu)成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要經(jīng)過講解例1,使學(xué)生認(rèn)識到能夠經(jīng)過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的"起點相同"這一特點的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。

  這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。

  設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。

 。3)共線向量的加法

  方向相同的兩個向量相加,對學(xué)生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:"異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。"類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則經(jīng)過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設(shè)計意圖:經(jīng)過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。

 。4)向量加法的運算律

  ①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

  形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對兩個法則特點及實質(zhì)的認(rèn)識。

 、诮Y(jié)合律:結(jié)合律是經(jīng)過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。

  接下來是對應(yīng)的兩個練習(xí),運用交換律與結(jié)合律計算向量的和。

  設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機(jī)會,然后用課件展示小結(jié)資料,使學(xué)生印象更深。

  (1)平行四邊形法則:起點相同,適用于不共線向量的求和。

  (2)三角形法則首尾相接,適用于任意多個向量的求和。

 。3)運算律

  高中數(shù)學(xué)說課稿 篇11

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。"用概率預(yù)測隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識,無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

  2、重點與難點。

  重點:對概率意義的理解,經(jīng)過多次重復(fù)實驗,用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。

  難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。

  過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗和統(tǒng)計的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的`定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。

  情感態(tài)度價值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的精準(zhǔn)、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對數(shù)學(xué)價值觀的認(rèn)識。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實生活中的實際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計教學(xué)情境,有序組織學(xué)生活動,讓課堂充滿生機(jī)活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計問題一,學(xué)生經(jīng)過對問題一的探究,一方面復(fù)習(xí)前面學(xué)過的"確定事件和不確定事件"的知識,為學(xué)好本節(jié)資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測隨機(jī)事件可能性發(fā)生大。。引導(dǎo)學(xué)生對問題二的探究與觀察實驗數(shù)據(jù),使學(xué)生了解概率這一重要概念的實際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學(xué)規(guī)律的真實的發(fā)現(xiàn)過程。

  2、歸納概括

  學(xué)生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。

  引導(dǎo)學(xué)生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題本事,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。

  3、舉例應(yīng)用

 、乓龑(dǎo)學(xué)生對教材書例題、問題一、問題二中問題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

  ⑵引導(dǎo)學(xué)生對練習(xí)中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。

  4、深化發(fā)展

 、旁O(shè)置3個小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對知識與方法的理解,并學(xué)會靈活運用。

  ⑵讓學(xué)生設(shè)計活動資料,對知識進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新本事。

  高中數(shù)學(xué)說課稿 篇12

  一、教學(xué)背景分析

  (一)教材地位分析:《橢圓及其標(biāo)準(zhǔn)方程》是繼學(xué)習(xí)圓以后運用“曲線與方程”思想解決二次曲線問題的又一實例,從知識上說,本節(jié)課是對坐標(biāo)法研究幾何問題的又一次實際運用,同時也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎(chǔ);從方法上說,它為進(jìn)一步研究雙曲線、拋物線提供了基本模式和理論基礎(chǔ),因此本節(jié)課起到了承上啟下的重要作用。

 。ǘ┲攸c、難點分析:本節(jié)課的重點是橢圓的定義及其標(biāo)準(zhǔn)方程,標(biāo)準(zhǔn)方程的推導(dǎo)是本節(jié)課的難點,要突破這一難點,關(guān)鍵是引導(dǎo)學(xué)生正確選擇去根式的策略。

 。ㄈ⿲W(xué)情分析:在學(xué)習(xí)本節(jié)課前,學(xué)生已經(jīng)學(xué)習(xí)了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標(biāo)法研究幾何問題也有了初步的認(rèn)識,因此,學(xué)生已經(jīng)具備探究有關(guān)點的軌跡問題的知識基礎(chǔ)和學(xué)習(xí)能力,但由于學(xué)生學(xué)習(xí)解析幾何時間還不長、學(xué)習(xí)程度也較淺,并且還受到高二這一年齡段學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)的影響,在學(xué)習(xí)過程中難免會有些困難。如:由于學(xué)生對運用坐標(biāo)法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會存在障礙。

  二、教學(xué)目標(biāo)設(shè)計

  (一)知識目標(biāo):掌握橢圓的定義及其標(biāo)準(zhǔn)方程;會根據(jù)條件寫出橢圓的標(biāo)準(zhǔn)方程;通過對橢圓標(biāo)準(zhǔn)方程的探求,再次熟悉求曲線方程的一般方法。

 。ǘ┠芰δ繕(biāo):學(xué)生通過動手畫橢圓、分組討論探究橢圓定義、推導(dǎo)橢圓標(biāo)準(zhǔn)方程等過程,提高動手能力、合作學(xué)習(xí)能力和運用知識解決實際問題的能力。

  (三)情感目標(biāo):在形成知識、提高能力的過程中,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神。

  三、教法學(xué)法設(shè)計

 。ㄒ唬┙虒W(xué)方法設(shè)計:為了更好地培養(yǎng)學(xué)生自主學(xué)習(xí)能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法。一方面我通過設(shè)置情境、問題誘導(dǎo)充分發(fā)揮主導(dǎo)作用;另一方面學(xué)生通過對我提供的素材進(jìn)行直觀觀察→動手操作→討論探究→歸納抽象→總結(jié)規(guī)律的過程充分體現(xiàn)主體地位。

  使用多媒體輔助教學(xué)與自制教具相結(jié)合的設(shè)計方案,實現(xiàn)多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀、實用的優(yōu)勢的結(jié)合,既突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。

  1、掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過程;

  2、能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握運用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;

  3、通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;

  4。通過橢圓的標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的思想方法,提高運用坐標(biāo)法解決幾何問題的能力;

  5。通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識。

  四、教學(xué)建議

  教材分析

  1、知識結(jié)構(gòu)

  2、重點難點分析

  重點是橢圓的定義及橢圓標(biāo)準(zhǔn)方程的兩種形式。難點是橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。關(guān)鍵是掌握建立坐標(biāo)系與根式化簡的方法。

  橢圓及其標(biāo)準(zhǔn)方程這一節(jié)教材整體來看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標(biāo)準(zhǔn)方程。橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用。先講橢圓也與第七章的圓的方程銜接自然。學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線是非常重要的。

 。1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質(zhì),可以對比圓的定義來理解。

  另外要注意到定義中對“常數(shù)”的限定即常數(shù)要大于。這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于時軌跡是一條線段;當(dāng)常數(shù)小于時無軌跡”。這樣有利于集中精力進(jìn)一步研究橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)。但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的`準(zhǔn)確性。

  (2)根據(jù)橢圓的定義求標(biāo)準(zhǔn)方程,應(yīng)注意下面幾點:

  ①曲線的方程依賴于坐標(biāo)系,建立適當(dāng)?shù)淖鴺?biāo)系,是求曲線方程首先應(yīng)該注意的地方。應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進(jìn)行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標(biāo)系的兩軸,不但可以使方程的推導(dǎo)過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔。

  ②設(shè)橢圓的焦距為,橢圓上任一點到兩個焦點的距離為,令,這些措施,都是為了簡化推導(dǎo)過程和最后得到的方程形式整齊、簡潔,要讓學(xué)生認(rèn)真領(lǐng)會。

  ③在方程的推導(dǎo)過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經(jīng)常遇到的問題,又是學(xué)生的難點。要注意說明這類方程的化簡方法:

 、俜匠讨兄挥幸粋根式時,需將它單獨留在方程的一側(cè),把其他項移至另一側(cè);

  ②方程中有兩個根式時,需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項。

  教科書上對橢圓標(biāo)準(zhǔn)方程的推導(dǎo),實際上只給出了“橢圓上點的坐標(biāo)都適合方程“而沒有證明,”方程的解為坐標(biāo)的點都在橢圓上”。這實際上是方程的同解變形問題,難度較大,對同學(xué)們不作要求。

 。3)兩種標(biāo)準(zhǔn)方程的橢圓異同點

  中心在原點、焦點分別在軸上,軸上的橢圓標(biāo)準(zhǔn)方程分別為:,。它們的相同點是:形狀相同、大小相同,都有,。不同點是:兩種橢圓相對于坐標(biāo)系的位置不同,它們的焦點坐標(biāo)也不同。

  橢圓的焦點在軸上標(biāo)準(zhǔn)方程中項的分母較大;

  橢圓的焦點在軸上標(biāo)準(zhǔn)方程中項的分母較大。

  另外,形如中,只要,,同號,就是橢圓方程,它可以化為。

 。4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法。例3有三個作用:第一是教給學(xué)生利用中間變量求點的軌跡的方法;第二是向?qū)W生說明,如果求得的點的軌跡的方程形式與橢圓的標(biāo)準(zhǔn)方程相同,那么這個軌跡是橢圓;第三是使學(xué)生知道,一個圓按某一個方向作伸縮變換可以得到橢圓。

  高中數(shù)學(xué)說課稿 篇13

  一、教材分析

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)資料,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,并且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。

  根據(jù)上述教材資料分析,研究到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

  本事目標(biāo):引導(dǎo)學(xué)生經(jīng)過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維本事,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,經(jīng)過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和進(jìn)取性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。

  教學(xué)重點:正弦定理的資料,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數(shù)。

  二、教法

  根據(jù)教材的.資料和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,進(jìn)取探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的本事線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過例題和練習(xí)來突破難點

  三、學(xué)法:

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、團(tuán)體等多種解難釋疑的嘗試活動,將自我所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維本事,構(gòu)成了實事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

  四、教學(xué)過程

  第一:創(chuàng)設(shè)情景,大概用2分鐘

  第二:實踐探究,構(gòu)成概念,大約用25分鐘

  第三:應(yīng)用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的教師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今日的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1、激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

  2、那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3、讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

  在三角形中,角與所對的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1、強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2、鼓勵學(xué)生經(jīng)過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3、提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4。思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

 。ㄋ模w納總結(jié),簡單應(yīng)用

  1、讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

  2、正弦定理的資料,討論能夠解決哪幾類有關(guān)三角形的問題。

  3、運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

 。ㄎ澹┲v解例題,鞏固定理

  1、例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2、例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

 。┱n堂練習(xí),提高鞏固

  1.在△ABC中,已知下列條件,解三角形

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,教師巡視,及時發(fā)現(xiàn)問題,并解答。

 。ㄆ撸┬〗Y(jié)反思,提高認(rèn)識

  經(jīng)過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

  1、用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2、它表述了三角形的邊與對角的正弦值的關(guān)系。

  3、定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

 。◤膶嶋H問題出發(fā),經(jīng)過猜想、實驗、歸納等思維方法,最終得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結(jié)論,并且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生進(jìn)取性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

  (八)任務(wù)后延,自主探究

  如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)資料,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)資料。

  高中數(shù)學(xué)說課稿 篇14

  一、教材分析

  1、《指數(shù)函數(shù)》在教材中的地位、作用和特點

  《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)資料,是在學(xué)習(xí)了《指數(shù)》一節(jié)資料之后編排的。經(jīng)過本節(jié)課的學(xué)習(xí),既能夠?qū)χ笖?shù)和函數(shù)的概念等知識進(jìn)一步鞏固和深化,又能夠為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅僅是本章《函數(shù)》的重點資料,也是高中學(xué)段的主要研究資料之一,有著不可替代的重要作用。

  此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體此刻細(xì)胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)資料的特點之一是概念性強(qiáng),特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。

  2、教學(xué)目標(biāo)、重點和難點

  經(jīng)過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了必須的認(rèn)知結(jié)構(gòu),主要體此刻三個方面:

  知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。

  技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。

  素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有必須的體會,已初步了解了數(shù)形結(jié)合的思想。

  鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知本事的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:

  (1)知識目標(biāo):

 、僬莆罩笖(shù)函數(shù)的概念;

 、谡莆罩笖(shù)函數(shù)的圖象和性質(zhì);

 、勰艹醪嚼弥笖(shù)函數(shù)的概念解決實際問題;

  (2)技能目標(biāo):

  ①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法;

 、谂囵B(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的本事;

  (3)情感目標(biāo):

 、袤w驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題;

 、诮(jīng)過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的本事;

 、垲I(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。

  (4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。

  (5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

  突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

  二、教法設(shè)計

  由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖經(jīng)過這一節(jié)課的教學(xué)到達(dá)不僅僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而到達(dá)培養(yǎng)學(xué)生學(xué)習(xí)本事的目的,我根據(jù)自我對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個方面:

  1、創(chuàng)設(shè)問題情景、按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。

  2、強(qiáng)化“指數(shù)函數(shù)”概念、引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

  3、突出圖象的作用、在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家以往說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),所以圖象發(fā)揮了主要的'作用。

  4、注意數(shù)學(xué)與生活和實踐的聯(lián)系、數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。

  三、學(xué)法指導(dǎo)

  本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運算后編排的,針對學(xué)生實際情景,我主要在以下幾個方面做了嘗試:

  1、再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫忙學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。

  2、領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。

  3、在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的理解和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。

  4、注意學(xué)習(xí)過程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不一樣難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。

  四、程序設(shè)計

  在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。

  1、創(chuàng)設(shè)情景、導(dǎo)入新課

  教師活動:

 、儆秒娔X展示兩個實例,第一個是計算機(jī)價格下降問題,第二個是生物中細(xì)胞分裂的例子;

 、趯W(xué)生按奇數(shù)列、偶數(shù)列分組。

  學(xué)生活動:

 、俜謩e寫出計算機(jī)價格y與經(jīng)過月份x的關(guān)系式和細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;

 、诨貞浿笖(shù)的概念;

 、蹥w納指數(shù)函數(shù)的概念;

 、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。

  設(shè)計意圖:經(jīng)過生活實例激發(fā)學(xué)生的學(xué)習(xí)動機(jī),,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點做好準(zhǔn)備;

  2、啟發(fā)誘導(dǎo)、探求新知

  教師活動:

  ①給出兩個簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象

 、谠跍(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象

 、郯鍟笖(shù)函數(shù)的性質(zhì)。

  學(xué)生活動:

  ①畫出兩個簡單的指數(shù)函數(shù)圖象

 、诮涣、討論

  ③歸納出研究函數(shù)性質(zhì)涉及的方面

 、芸偨Y(jié)出指數(shù)函數(shù)的性質(zhì)。

  設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的資料有著必須的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,到達(dá)進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情景,學(xué)生就會很自然的經(jīng)過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。

  高中數(shù)學(xué)說課稿 篇15

  一、說教材

  1、教材的地位、作用及編寫意圖

  《對數(shù)函數(shù)》出此刻職業(yè)高中數(shù)學(xué)第一冊第四章第四節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等資料,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;"對數(shù)函數(shù)"這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關(guān)系,蘊(yùn)含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考資料。

  2、教學(xué)目標(biāo)的確定及依據(jù)。

  依據(jù)教學(xué)大綱和學(xué)生獲得知識、培養(yǎng)本事及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):

 。1)知識目標(biāo):理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。

 。2)本事目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的本事。

 。3)德育目標(biāo):培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。

 。4)情感目標(biāo):在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。

  3、教學(xué)重點、難點及關(guān)鍵

  重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);

  難點:利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);

  關(guān)鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。

  二、說教法

  大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解本事,運算本事,思維本事等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)進(jìn)取性不高。針對這種情景,在教學(xué)中,我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對數(shù)函數(shù)圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地理解并提高學(xué)生的學(xué)習(xí)興趣和進(jìn)取性,很好地突破難點和提高教學(xué)效率。

  三、說學(xué)法

  教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生進(jìn)取思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):

 。1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。

 。2)探究式學(xué)習(xí)法:學(xué)生經(jīng)過分析、探索、得出對數(shù)函數(shù)的定義。

 。3)自主性學(xué)習(xí)法:經(jīng)過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。

  (4)反饋練習(xí)法:檢驗知識的應(yīng)用情景,找出未掌握的資料及其差距。

  這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種本事。

  四、說教學(xué)程序

  1、復(fù)習(xí)導(dǎo)入

 。1)復(fù)習(xí)提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。

  設(shè)計意圖:設(shè)計的提問既與本節(jié)資料有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知識清除了障礙,有意識地培養(yǎng)學(xué)生分析問題的本事。

 。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?

  設(shè)計意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望明白問題的答案。

  2、認(rèn)定目標(biāo)(出示教學(xué)目標(biāo))

  3、導(dǎo)學(xué)達(dá)標(biāo)

  按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線"的原則,安排師生互動活動。

 。1)對數(shù)函數(shù)的概念

  引導(dǎo)學(xué)生從對數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進(jìn)行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a》0且a≠1)的反函數(shù)是y=logax,見課件。把函數(shù)y=logax叫做對數(shù)函數(shù),其中a》0且a≠1.從而引出對數(shù)函數(shù)的概念,展示課件。

  設(shè)計意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學(xué)生易于理解。因為對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識,經(jīng)過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。

 。2)對數(shù)函數(shù)的圖象

  提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都能夠根據(jù)函數(shù)的解析式,列表、描點畫圖。再研究一下,我們還能夠用什么方法畫出對數(shù)函數(shù)的圖象呢?

  讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。

  教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。

  方法一(描點法)首先列出x,y(y=log2x,y=logx)值的對應(yīng)表,因為對數(shù)函數(shù)的定義域為x》0,所以可取x=···,,,1,2,4,8···,請計算對應(yīng)的y值,然后在坐標(biāo)系內(nèi)描點、畫出它們的圖象。

  方法二(圖象變換法)因為對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),圖象關(guān)于直線y=x對稱,所以只要畫出y=ax的'圖象關(guān)于直線y=x對稱的曲線,就能夠得到y(tǒng)=logax.的圖象。學(xué)生動手做實驗,先描出y=2x的圖象,畫出它關(guān)于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=()x的圖象畫出y=logx的圖象,再出示課件,教師加以解釋。

  設(shè)計意圖:用這種對稱變換的方法畫函數(shù)的圖象,能夠加深和鞏固學(xué)生對互為反函數(shù)的兩個函數(shù)之間的認(rèn)識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點法畫函數(shù)圖象更為方便,兩種方法可同時進(jìn)行,分析畫法之后,可讓學(xué)生自由選擇畫法。這樣能夠充分調(diào)動學(xué)生自主學(xué)習(xí)的進(jìn)取性。

 。3)對數(shù)函數(shù)的性質(zhì)

  在理解對數(shù)函數(shù)定義的基礎(chǔ)上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點,關(guān)鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對數(shù)函數(shù)的性質(zhì),可先在同一坐標(biāo)系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補(bǔ)充。作了以上分析之后,再分a》1與0《a《1兩種情景列出對數(shù)函數(shù)圖象和性質(zhì)表,()體現(xiàn)了從"特殊到一般"、"從具體到抽象"的方法。出示課件并進(jìn)行詳細(xì)講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學(xué)生比較著記憶。

  設(shè)計意圖:這種講法既嚴(yán)謹(jǐn)又直觀易懂,還能讓學(xué)生主動參與教學(xué)過程,對培養(yǎng)學(xué)生的創(chuàng)新本事有幫忙,學(xué)生易于理解易于掌握,并且利用表格,能夠突破難點。

  由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)

  設(shè)計意圖:經(jīng)過比較對照的方法,學(xué)生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認(rèn)識兩個函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對函數(shù)思想方法的認(rèn)識和應(yīng)用意識。

  4、鞏固達(dá)標(biāo)(見課件)

  這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識解決實際問題的本事,經(jīng)過這個環(huán)節(jié)學(xué)生能夠加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結(jié)。充分體現(xiàn)"數(shù)形結(jié)合"和"分類討論"的思想。

  5、反饋練習(xí)(見課件)

  習(xí)題是對學(xué)生所學(xué)知識的反饋過程,教師能夠了解學(xué)生對知識掌握的情景。

  6、歸納總結(jié)(見課件)

  引導(dǎo)學(xué)生對主要知識進(jìn)行回顧,使學(xué)生對本節(jié)有一個整體的把握,所以,從三方面進(jìn)行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。

  7、課外作業(yè):

  (1)完成P782、3題

 。2)當(dāng)?shù)讛?shù)a》1與0《a《1時,底數(shù)不一樣,對數(shù)函數(shù)圖象有什么持點?

  五、說板書

  板書設(shè)計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。

  高中數(shù)學(xué)說課稿 篇16

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實際問題中的.應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。

  2、教學(xué)重點與難點:

  重點:畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  難點:在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  二、目標(biāo)分析:

  在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。

  知識目標(biāo):

  1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問題的圖解法;

  3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解。

  能力目標(biāo):

  1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

  2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標(biāo):

  1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

  2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。

  三、過程分析:

  數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。因此,我將整個教學(xué)過程分為以下六個教學(xué)環(huán)節(jié):

  1、創(chuàng)設(shè)情境,提出問題;

  2、分析問題,形成概念;

  3、反思過程,提煉方法;

  4、變式演練,深入探究;

  5、運用新知,解決問題;

  6、歸納總結(jié),鞏固提高。

  1、創(chuàng)設(shè)情境,提出問題:

  在課堂教學(xué)的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財富,還被列為20世紀(jì)對科學(xué)發(fā)展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境。

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)的說課稿04-19

高中數(shù)學(xué)經(jīng)典說課稿11-25

高中數(shù)學(xué)《數(shù)列》說課稿01-18

高中數(shù)學(xué)優(yōu)秀說課稿03-08

高中數(shù)學(xué)數(shù)列說課稿11-20

高中數(shù)學(xué)優(yōu)秀說課稿03-03

高中數(shù)學(xué)的說課稿范文12-11

高中數(shù)學(xué)全套說課稿06-08

高中數(shù)學(xué)說課稿06-12

高中數(shù)學(xué)數(shù)列說課稿06-07