久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學(xué)說課稿

時(shí)間:2021-07-18 10:00:52 高中說課稿 我要投稿

精選高中數(shù)學(xué)說課稿模板合集五篇

  作為一位杰出的老師,往往需要進(jìn)行說課稿編寫工作,借助說課稿可以讓教學(xué)工作更科學(xué)化。說課稿要怎么寫呢?以下是小編幫大家整理的高中數(shù)學(xué)說課稿5篇,歡迎閱讀,希望大家能夠喜歡。

精選高中數(shù)學(xué)說課稿模板合集五篇

高中數(shù)學(xué)說課稿 篇1

  一、教學(xué)背景分析

  1、教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。

  2、學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3、教學(xué)目標(biāo)

  (1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

  ②會(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

  ③利用圓的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問題。

  (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。

  (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

 、谠隗w驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

  根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4、教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

  (2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

 、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

  二、教法學(xué)法分析

  1、教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。

  2、學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。

  下面我就對(duì)具體的教學(xué)過程和設(shè)計(jì)加以說明:

  三、教學(xué)過程與設(shè)計(jì)

  整個(gè)教學(xué)過程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

  首先:縱向敘述教學(xué)過程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  通過對(duì)這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。

  通過對(duì)問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)。

  (二)深入探究——獲得新知

  問題二 1、根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2、如果圓心在,半徑為時(shí)又如何呢?

  這一環(huán)節(jié)我首先讓學(xué)生對(duì)問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。

  (三)應(yīng)用舉例——鞏固提高

  I、直接應(yīng)用 內(nèi)化新知

  問題三 1、寫出下列各圓的標(biāo)準(zhǔn)方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過點(diǎn),圓心在點(diǎn)。

  2、寫出圓的圓心坐標(biāo)和半徑。

  我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

  II、靈活應(yīng)用 提升能力

  問題四 1、求以點(diǎn)為圓心,并且和直線相切的圓的方程。

  2、求過點(diǎn),圓心在直線上且與軸相切的圓的方程。

  3、已知圓的方程為,求過圓上一點(diǎn)的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。

  III、實(shí)際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0。01m)。

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。

  (四)反饋訓(xùn)練——形成方法

  問題六 1、求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

  2、求圓過點(diǎn)的切線方程。

  3、求圓過點(diǎn)的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

  (五)小結(jié)反思——拓展引申

  1、課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

 、賵A心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的.圓的標(biāo)準(zhǔn)方程為:。

 、谝阎獔A的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:。

  2、分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程。

  3、激發(fā)新疑

  問題七 1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

  2、方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

  以上是我縱向的教學(xué)過程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來,我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):

  橫向闡述教學(xué)設(shè)計(jì)

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五。這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破。

  (二)學(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

  (三)培養(yǎng)思維 提升能力 激勵(lì)創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。

  以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過程成為一種藝術(shù)的事業(yè)”。

高中數(shù)學(xué)說課稿 篇2

  函數(shù)的單調(diào)性

  今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動(dòng)變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。

  2、學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔须A段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了初步的感性認(rèn)識(shí)。在高中階段,用符號(hào)語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識(shí)奠定了基礎(chǔ)。

  教學(xué)目標(biāo)分析

  基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1.知識(shí)與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

 。2)會(huì)判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  2.過程與方法

 。1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識(shí)及能力;

 。2)體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。

  3.情感態(tài)度與價(jià)值觀

  由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識(shí)的欲望,突出學(xué)生的主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)

  重點(diǎn):

  函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  難點(diǎn):

  1.函數(shù)單調(diào)性概念的認(rèn)知

 。1)自然語言到符號(hào)語言的轉(zhuǎn)化;

 。2)常量到變量的轉(zhuǎn)化。

  2.應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對(duì)教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學(xué)過程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。

  (一)知識(shí)導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過學(xué)生自主探究,從知識(shí)產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動(dòng)性。

 。ǘ┲v授新課

  1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?

  通過學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動(dòng)情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說,老師逐步修正、完善學(xué)生的說法,最后給出正確答案。

  2.觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問題:

 。1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?

 。2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1

 。3)如何用數(shù)學(xué)符號(hào)語言來描述這個(gè)規(guī)律?

  教師補(bǔ)充:這時(shí)我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。

 。4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過對(duì)以上問題的分析,從正、反兩方面領(lǐng)會(huì)函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1

  仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說,一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

  (我將給出函數(shù)y=x2,并畫出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過程中,學(xué)生把對(duì)圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對(duì)概念的理解)

 。ㄈ╈柟叹毩(xí)

  1練習(xí)1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x

  練習(xí)2:練習(xí)2:判斷下列說法是否正確

 、俣x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

 、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因?yàn)閒(-1)

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x

  上的單調(diào)性。通過這種練習(xí)的方式,幫助學(xué)生鞏固對(duì)知識(shí)的掌握。

 。ㄋ模w納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。ㄎ澹┎贾米鳂I(yè)

  必做題:習(xí)題2-3A組第2,4,5題。

  選做題:習(xí)題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。

  篇二:高一數(shù)學(xué)必修一說課稿

  二次函數(shù)的圖像說課稿

  今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

  一、教材分析

  教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

  學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔械臅r(shí)候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對(duì)二次函數(shù)的圖像由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

  二、教學(xué)目標(biāo)分析

  基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1.知識(shí)與技能

  理解二次函數(shù)中參數(shù)a,b,c,h,k對(duì)其圖像的影響;

  2.過程與方法

  通過體驗(yàn)對(duì)二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

  3.情感態(tài)度與價(jià)值觀

  通過本節(jié)的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。

  三、教學(xué)重難點(diǎn)分析

  通過以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下

  重點(diǎn):

  二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

  難點(diǎn):

  探索平移對(duì)函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對(duì)教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。

  五、教學(xué)過程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。

 。1)知識(shí)導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn)。

 。2)講授新課

  例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

  讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對(duì)比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

  前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。在這個(gè)過程中,學(xué)生把對(duì)圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對(duì)概念的理解,

 。3)鞏固練習(xí)

  我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對(duì)圖像的影響。

  (4)歸納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。5)布置作業(yè)

  略

高中數(shù)學(xué)說課稿 篇3

  我將從教學(xué)理念;教材分析;教學(xué)目標(biāo);教學(xué)過程;教法、學(xué)法;教學(xué)評(píng)價(jià)六個(gè)方面來陳述我對(duì)本節(jié)課的設(shè)計(jì)方案。

  一、教學(xué)理念

  新的課程標(biāo)準(zhǔn)明確指出“數(shù)學(xué)是人類文化的重要組成部分,構(gòu)成了公民所必須具備的一種基本素質(zhì)!逼浜x就是:我們不僅要重視數(shù)學(xué)的應(yīng)用價(jià)值,更要注重其思維價(jià)值和人文價(jià)值。

  因此,創(chuàng)造性地使用教材,積極開發(fā)、利用各種教學(xué)資源,創(chuàng)設(shè)教學(xué)情境,讓學(xué)生通過主動(dòng)參與、積極思考、與人合作交流和創(chuàng)新等過程,獲得情感、能力、知識(shí)的全面發(fā)展。本節(jié)課力圖打破常規(guī),充分體現(xiàn)以學(xué)生為本,全方位培養(yǎng)、提高學(xué)生素質(zhì),實(shí)現(xiàn)課程觀念、教學(xué)方式、學(xué)習(xí)方式的轉(zhuǎn)變。

  二、教材分析

  三角函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容之一,它既是解決生產(chǎn)實(shí)際問題的工具,又是學(xué)習(xí)高等數(shù)學(xué)及其它學(xué)科的基礎(chǔ)。本節(jié)課是在學(xué)習(xí)了任意角的三角函數(shù),兩角和與差的三角函數(shù)以及正、余弦函數(shù)的圖象和性質(zhì)后,進(jìn)一步研究函數(shù)y=Asin(ωx+φ)的簡(jiǎn)圖的畫法,由此揭示這類函數(shù)的圖象與正弦曲線的關(guān)系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進(jìn)一步理解正、余弦函數(shù)的性質(zhì),它是研究函數(shù)圖象變換的一個(gè)延伸,也是研究函數(shù)性質(zhì)的一個(gè)直觀反映。共3課時(shí),本節(jié)課是繼學(xué)習(xí)完振幅、周期、初相變換后的第二課時(shí)。

  本節(jié)課倡導(dǎo)學(xué)生自主探究,在教師的引導(dǎo)下,通過五點(diǎn)作圖法正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律是本節(jié)課的重點(diǎn)。

  難點(diǎn)是對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對(duì)一個(gè)字母x而言的變換成為突破本節(jié)課教學(xué)難點(diǎn)的關(guān)鍵。

  依據(jù)《課標(biāo)》,根據(jù)本節(jié)課內(nèi)容和學(xué)生的實(shí)際,我確定如下教學(xué)目標(biāo)。

  三、教學(xué)目標(biāo)

 。壑R(shí)與技能]

  通過“五點(diǎn)作圖法”正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律,能用五點(diǎn)作圖法和圖象變換法畫出函數(shù)y=Asin(ωx+φ)的簡(jiǎn)圖,能舉一反三地畫出函數(shù)y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡(jiǎn)圖。

 。圻^程與方法]

  通過引導(dǎo)學(xué)生對(duì)函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會(huì)到由簡(jiǎn)單到復(fù)雜,特殊到一般的化歸思想;并通過對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì)抓住問題的主要矛盾來解決問題的基本思想方法。

 。矍楦袘B(tài)度與價(jià)值觀]

  課堂中,通過對(duì)問題的自主探究,培養(yǎng)學(xué)生的獨(dú)立意識(shí)和獨(dú)立思考能力;小組交流中,學(xué)會(huì)合作意識(shí);在解決問題的難點(diǎn)時(shí),培養(yǎng)學(xué)生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學(xué)生追求真理,樂于創(chuàng)新的情感需求,引發(fā)學(xué)生渴求知識(shí)的強(qiáng)烈愿望,樹立科學(xué)的人生觀、價(jià)值觀。

  四、教學(xué)過程(六問三練)

  1、設(shè)置情境

  《函數(shù)y=Asin(ωx+φ)的圖象(第二課時(shí))》說課稿。

高中數(shù)學(xué)說課稿 篇4

  大家好!~今天我要講的是必修課程數(shù)學(xué)1中《集合》的相關(guān)內(nèi)容。

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

  本節(jié)課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標(biāo)

  1、學(xué)習(xí)目標(biāo)

 。1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合之間的關(guān)系以及理解“屬于”關(guān)系;

 。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  2、能力目標(biāo)

 。1)能夠把一句話一個(gè)事件用集合的方式表示出來。

  (2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

  3、情感目標(biāo)

  通過本節(jié)的把實(shí)際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn) 集合的基本概念與表示方法;

  難點(diǎn) 運(yùn)用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

  四、教學(xué)方法

 。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果;

  (2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

  五、學(xué)習(xí)方法

  (1)主動(dòng)學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認(rèn)識(shí)的同時(shí),

  教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識(shí),培養(yǎng)學(xué)生思維想象 的綜合能力。

 。2)反饋補(bǔ)救法:在練習(xí)中,注意觀察學(xué)生對(duì)學(xué)習(xí)的反饋情況,以實(shí)現(xiàn)“培

  優(yōu)扶差,滿足不同。”

  六、教學(xué)思路

  具體的思路如下

  復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對(duì)數(shù)學(xué)更加感興趣,有助于上課的效率!因?yàn)闀r(shí)間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。

  一、 引入課題

  軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對(duì)象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問題:

 。1)集合有那些概念?

  (2)集合有那些符號(hào)?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類?

  (一)集合的有關(guān)概念

 。1)對(duì)象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號(hào),

  都可以稱作對(duì)象。

  (2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說這個(gè)整體是由

  這些對(duì)象的全體構(gòu)成的集合。

 。3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素。

  集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

  1。 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,

  對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問題。

  2、元素與集合的關(guān)系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

  要注意“∈”的方向,不能把a(bǔ)∈A顛倒過來寫。 (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

 。1)確定性:給定一個(gè)集合,任何對(duì)象是不是這個(gè)集合的元素是確定的了。

 。2)互異性:集合中的元素一定是不同的。

 。3)無序性:集合中的元素沒有固定的順序。

  4、集合分類

  根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

 。2)含有有限個(gè)元素的集合叫做有限集

 。3)含有無窮個(gè)元素的集合叫做無限集

  注:應(yīng)區(qū)分?,{?},{0},0等符號(hào)的含義

  5、常用數(shù)集及其表示方法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合。記作N

 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+

  (3)整數(shù)集:全體整數(shù)的集合。記作Z

 。4)有理數(shù)集:全體有理數(shù)的集合。記作Q

 。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合。記作R

  注:(1)自然數(shù)集包括數(shù)0。

 。2)非負(fù)整數(shù)集內(nèi)排除0的集。記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排

  除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語言來描述一個(gè)集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

 。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi)。

  如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

 。2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號(hào){}內(nèi)。 具體方法:在大括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

  如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說明:(課本P5最后一段)

  思考3:(課本P6思考) 強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

  說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個(gè)元素時(shí),不宜采用列舉法。

 。ㄈ┱n堂練習(xí)(課本P6練習(xí))

  三、 歸納小結(jié)與作業(yè)

  本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書面作業(yè):習(xí)題1。1,第1— 4題

高中數(shù)學(xué)說課稿 篇5

  一、教材分析

  1、教材內(nèi)容

  本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡(jiǎn)單問題。

  2、教材所處地位、作用

  函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì)。通過對(duì)本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會(huì)函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識(shí)解決一些簡(jiǎn)單的實(shí)際問題。通過上述活動(dòng),加深對(duì)函數(shù)本質(zhì)的認(rèn)識(shí)。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識(shí)之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。

  3、教學(xué)目標(biāo)

 。1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

  的方法;

 。2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

 。3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;

  (2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。

  教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識(shí)形成;

 。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。

  二、教法分析與學(xué)法指導(dǎo)

  本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

  1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主體參與的積極性。

  2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個(gè)完成對(duì)各個(gè)難點(diǎn)的突破,以獲得各類問題的解決。

  3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評(píng)和規(guī)范書寫等方面,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá)。

  4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。

  在學(xué)法上:

  1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

  2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的一個(gè)飛躍。

  三、 教學(xué)過程

  教學(xué)

  環(huán)節(jié)

  教 學(xué) 過 程

  設(shè) 計(jì) 意 圖

  問題

  情境

 。úシ胖醒腚娨暸_(tái)天氣預(yù)報(bào)的音樂)

  滿足在定義域上的單調(diào)性的討論。

  2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。

  3、重視學(xué)生的動(dòng)手實(shí)踐過程。通過對(duì)定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運(yùn)用定義。

  4、重視課堂問題的設(shè)計(jì)。通過對(duì)問題的設(shè)計(jì),引導(dǎo)學(xué)生解決問題。

【精選高中數(shù)學(xué)說課稿模板合集五篇】相關(guān)文章:

精選高中數(shù)學(xué)說課稿模板合集六篇08-02

精選高中數(shù)學(xué)說課稿模板合集八篇07-30

高中數(shù)學(xué)說課稿模板合集八篇07-12

精選高中數(shù)學(xué)說課稿模板五篇07-25

精選高中數(shù)學(xué)說課稿模板八篇06-18

精選高中數(shù)學(xué)說課稿合集7篇06-21

關(guān)于高中數(shù)學(xué)說課稿模板合集九篇07-30

關(guān)于高中數(shù)學(xué)說課稿模板合集5篇07-25

有關(guān)高中數(shù)學(xué)說課稿模板合集8篇07-23