久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數學說課稿

時間:2021-08-11 11:26:20 高中說課稿 我要投稿

有關高中數學說課稿范文匯編8篇

  作為一名教師,通常需要用到說課稿來輔助教學,說課稿可以幫助我們提高教學效果。那么應當如何寫說課稿呢?以下是小編為大家整理的高中數學說課稿8篇,歡迎閱讀與收藏。

有關高中數學說課稿范文匯編8篇

高中數學說課稿 篇1

  各位老師你們好!今天我要為大家講的課題是

  首先,我對本節(jié)教材進行一些分析:

  一、教材分析(說教材):

  1. 教材所處的地位和作用:

  本節(jié)內容在全書和章節(jié)中的作用是:《 》是 中數學教材第 冊第 章第 節(jié)內容。在此之前學生已學習了 基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。

  2. 教育教學目標:

  根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

 。1)知識目標: (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發(fā),激發(fā)學生學習興趣。

  3. 重點,難點以及確定依據:

  本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點

  重點: 通過 突出重點

  難點: 通過 突破難點

  關鍵:

  下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談:

  二、教學策略(說教法)

  1. 教學手段:

  如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點: 應著重采用 的教學方法。

  2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

  3. 學情分析:(說學法)

  我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

 。1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學

  生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散

  (2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

  (3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力

  最后我來具體談談這一堂課的教學過程:

  4. 教學程序及設想:

 。1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

 。2)由實例得出本課新的知識點

 。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。

 。4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

 。5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。

 。6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。

 。7)板書

  (8)布置作業(yè)。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

  教學程序:

  課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分

高中數學說課稿 篇2

  一、本節(jié)內容的地位與重要性

  "分類計數原理與分步計數原理"是《高中數學》一節(jié)獨特內容。這一節(jié)課與排列、組合的基本概念有著緊密的聯系,通過對這一節(jié)課的學習,既可以讓學生接受、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。

  二、關于教學目標的確定

  根據兩個基本原理的地位和作用,我認為本節(jié)課的教學目標是:

  (1)使學生正確理解兩個基本原理的概念;

 。2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;

 。3)提高分析、解決問題的能力

  (4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。

  三、關于教學重點、難點的選擇和處理

  中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點內容。

  正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,面對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節(jié)課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生接受概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。

  四、關于教學方法和教學手段的選用

  根據本節(jié)課的內容及學生的實際水平,我采取啟發(fā)引導式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。

  啟發(fā)引導式作為一種啟發(fā)式教學方法,體現了認知心理學的基本理論。符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發(fā)展相結合、教師的主導作用與學生的主體地位相統(tǒng)一等原則,教學過程中,教師采用點撥的方法,啟發(fā)學生通過主動思考、動手操作來達到對知識的"發(fā)現"和接受,進而完成知識的內化,使書本的知識成為自己的知識。

  電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現,更好地為教學服務。

  五、關于學法的指導

  "授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現的學習能力,增強學生的綜合素質,從而達到教學的目標。教學中,教師創(chuàng)設疑問,學生想辦法解決疑問,通過教師的啟發(fā)點撥,類比推理,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個環(huán)節(jié),學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學生認知水平,培養(yǎng)了學習能力。

  六、關于教學程序的設計

  (一)課題導入

  這是本章的第一節(jié)課,是起始課,講起始課時,把這一學科的內容作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下面的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發(fā)興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節(jié)的必要性,明確研究計數方法是本章內容的獨特性,從應用的廣泛看學習本章內容的重要性。同時板書課題(分類計數原理與分步計數原理)

  這樣做,能使學生明白本節(jié)內容的地位和作用,激發(fā)其學習新知識的欲望,為順利完成教學任務做好思維上的準備。

 。ǘ┬抡n講授

  通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。

  緊跟著給出:

  引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法?

  引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

  這個問題的兩個引申由漸入深、循序漸進為學生接受分類計數原理做好了準備。

  板書分類計數原理內容:

  完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)

  此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理內容,啟發(fā)總結得下面三點注意:(出示幻燈片)

 。1)各分類之間相互獨立,都能完成這件事;

 。2)根據問題的特點在確定的分類標準下進行分類;

 。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

  這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。

  接下來給出問題2:(出示幻燈片)

  由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經B村去C村,共有多少種不同的走法?

  提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學生會發(fā)現問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

  問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現出六種不同的走法,讓學生列式求出不同走法數,并列舉所有走法。

  歸納得出:分步計數原理(板書原理內容)

  分步計數原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

  N=m1×m2×…×mn

  種不同的方法。

  同樣趁學生對定理有一定的認識,引導學生分析分步計數原理內容,啟發(fā)總結得下面三點注意:(出示幻燈片)

 。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;

 。2) 根據問題的特點在確定的分步標準下分步;

 。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。

 。ㄈ⿷门e例

  教材例1:(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。

  例2:由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?本題設置了4個問題:

 。1) 每一個三位數是由什么構成的?(三個整數字)

 。2) 023是一個三位數嗎?(百位上不能是0)

  (3) 組成一個三位數需要怎么做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)

  (4) 怎樣表述?

  教師巡視指導、并歸納

  解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法。根據分步計數原理,得到可以組成的三位整數的個數是N=4×5×5=100.

  答:可以組成100個三位整數。

 。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高。

  教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)

 。ㄋ模w納小結

  師:什么時候用分類計數原理、什么時候用分步計數原理呢?

  生:分類時用分類計數原理,分步時用分步計數原理。

  師:應用兩個基本原理時需要注意什么呢?

  生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。

  (五)課堂練習

  P222:練習1~4.學生板演第4題

 。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構成給以提示)

  (六)布置作業(yè)

  P222:練習5,6,7.

  補充題:

  1.在所有的兩位數中,個位數字小于十位數字的共有多少個?

 。ㄌ崾荆喊词簧蠑底值拇笮】梢苑譃9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)

  2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數。

 。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)

  3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?

 。ㄌ崾荆嚎梢杂孟旅娣椒▉砬蠼猓海1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)

  4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

 。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心學習,認真復習,就有可能在高中的戰(zhàn)場上考取自己理想的成績。

高中數學說課稿 篇3

  今天我說課的內容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質》。下面我就從教材分析、教法、學法和教學程序四個方面對本課的教學設計進行說明。

  一、說教材

  1、本節(jié)在教材中的地位和作用:

  本節(jié)是棱柱的后續(xù)內容,又是學習球的必要基礎。第一課時的教學目的是讓學生掌握棱錐的一些必要的基礎知識,同時培養(yǎng)學生猜想、類比、比較、轉化的能力。著名的生物學家達爾文說:“最有價值的知識是關于方法和能力的知識”,因此,應該利用這節(jié)課培養(yǎng)學生學習方法、提高學習能力。

  2. 教學目標確定:

  (1)能力訓練要求

 、偈箤W生了解棱錐及其底面、側面、側棱、頂點、高的概念。

 、谑箤W生掌握截面的性質定理,正棱錐的性質及各元素間的關系式。

  (2)德育滲透目標

 、倥囵B(yǎng)學生善于通過觀察分析實物形狀到歸納其性質的能力。

 、谔岣邔W生對事物的感性認識到理性認識的能力。

  ③培養(yǎng)學生“理論源于實踐,用于實踐”的觀點。

  3. 教學重點、難點確定:

  重 點:1.棱錐的截面性質定理 2.正棱錐的性質。

  難 點:培養(yǎng)學生善于比較,從比較中發(fā)現事物與事物的區(qū)別。

  二、說教學方法和手段

  1、教法:

  “以學生參與為標志,以啟迪學生思維,培養(yǎng)學生創(chuàng)新能力為核心”。

  在教學中根據高中生心理特點和教學進度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學生主體地位。

  2、教學手段:

  根據《教學大綱》中“堅持啟發(fā)式,反對注入式”的教學要求,針對本節(jié)課概念性強,思維量大,整節(jié)課以啟發(fā)學生觀察思考、分析討論為主,采用“多媒體引導點撥”的教學方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學生沿著積極的思維方向,逐步達到即定的教學目標,發(fā)展學生的邏輯思維能力;學生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現、積極探索。

  三、說學法:

  這節(jié)課的核心是棱錐的截面性質定理,.正棱錐的性質。教學的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規(guī)律,啟發(fā)學生反復思考,不斷內化成為自己的認知結構。

  四、 學程序:

  [復習引入新課]

  1.棱柱的性質:

  (1)側棱都相等,側面是平行四邊形

 。2)兩個底面與平行于底面的截面是全等的多邊形

 。3)過不相鄰的兩條側棱的截面是平行四邊形

  2.幾個重要的四棱柱:

  平行六面體、直平行六面體、長方體、正方體

  思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

 。1).棱錐及其底面、側面、側棱、頂點、高、對角面的概念

  (2).棱錐的表示方法、分類

  2、棱錐的性質

  (1). 截面性質定理:

  如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質:

  正棱錐的定義:

 、俚酌媸钦噙呅

 、陧旤c在底面的射影是底面的中心

 、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

  ②棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;

  棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形

  引申:

  ①正棱錐的側棱與底面所成的角都相等;

  ②正棱錐的側面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關系

  下面我們結合圖形,進一步探討正棱錐中各元素間的關系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。

  引申:

 、儆^察圖中三棱錐S-OBM的側面三角形狀有何特點?

 。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)

  ②若分別假設正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過三角形得出以上各元素間的關系式。

 。ㄕn后思考題)

  [例題分析]

  例1.若一個正棱錐每一個側面的頂角都是600,則這個棱錐一定不是( )

  A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

 。ù鸢福篋)

  例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經過SO的中點且平行于底面的截面△A’B’C’的面積。

  ﹙解析及圖略﹚

  例3.已知正四棱錐的棱長和底面邊長均為a,求:

 。1)側面與底面所成角α的余弦(2)相鄰兩個側面所成角β的余弦

  ﹙解析及圖略﹚

  [課堂練習]

  1、 知一個正六棱錐的高為h,側棱為L,求它的底面邊長和斜高。

  ﹙解析及圖略﹚

  2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。

  ﹙解析及圖略﹚

  [課堂小結]

  一:棱錐的基本概念及表示、分類

  二:棱錐的性質

  截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

  2.正棱錐的定義及基本性質

  正棱錐的定義:

 、俚酌媸钦噙呅

  ②頂點在底面的射影是底面的中心

 。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高

  相等,它們叫做正棱錐的斜高;

  (2)棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形

  引申: ①正棱錐的側棱與底面所成的角都相等;

  ②正棱錐的側面與底面所成的二面角相等;

  ③正棱錐中各元素間的關系

  [課后作業(yè)]

  1:課本P52 習題9.8 : 2、 4

  2:課時訓練:訓練一

高中數學說課稿 篇4

  一.內容和內容分析

  “函數的奇偶性”是人教版數學必修教材必修一第一章第三節(jié)的內容,本節(jié)的主要內容是研究函數的一個性質—函數的奇偶性,學習奇函數和偶函數的概念.奇偶性是函數的一條重要性質,教材從學生熟悉的兩個特殊函數入手,從特殊到一般,從具體到抽象,從感性到理性比較系統(tǒng)地介紹了函數的奇偶性.從知識結構看,它既是函數概念的拓展和深化,又為后續(xù)研究指數函數、對數函數、冪函數、三角函數的基礎,因此,本節(jié)課起著承上啟下的重要作用。 本節(jié)課的教學重點:函數奇偶性的概念及判定。

  二.目標和目標分析

 。1)知識目標:從形和數兩個方面進行引導,使學生理解奇偶性的概念,學會利用定義判斷

  簡單函數的奇偶性。

  (2)能力目標:通過設置問題情境培養(yǎng)學生判斷、推理的能力,同時滲透數形結合和由特殊

  到一般的數學思想方法.

  (3)情感目標:在學生感受數學美的同時,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神。

  三.教學問題診斷分析

  導入有點慢,講的有點細,導致時間上沒有完成教學任務,感覺還是自己講的太多,不能充分調動學生的積極性。

  四.教學支持條件分析

  用了多媒體,使用ppt,使得奇偶性函數概念的探究過程更形象更直觀,是學生理解更深刻。

  五.教學過程設計

  為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了四個主要的教學程序是:

  1.設疑導入、觀圖激趣:

  使用幻燈片展示圖片蝴蝶、雪花等讓學生感受生活中的美,從而引入對稱在函數中的體現。

  2.指導觀察、形成概念:

  作出函數y=x的圖象,并觀察這兩個函數圖象的對稱性如何?

  借助課件演示,讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況?借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示。根據以上特點,請學生用完整的語言敘述定義,同時給出板書:

  函數f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數,類比探究2

  偶函數的過程,得到奇函數的概念,又通過具體的例子說明了定義域關于原點對稱是研究奇偶性的前提。

  3.學生探索、發(fā)展思維。

  接著通過學案上的例一,總結函數奇偶性的判斷方法及步驟:

  (1)求出函數的定義域,并判斷是否關于原點對稱

  (2)驗證f(-x)=f(x)或f(-x)=-f(x)

  (3)得出結論

  由學生小結判斷奇偶性的步驟之后,提出新的問題:函數按奇偶性如何分類?既奇又偶的函數是不是只有一個?試舉例說明。

  4.布置作業(yè):

  六.目標檢測設計

  學案上的題型主要包括奇偶性函數的判斷及應用

  七.教學反思:(從兩方面)

  1.思成功

  一:是通過設計富有挑戰(zhàn)性的問題來呈現背景,通過問題的探究和自主學習來獲取相關概念,實現了 “教學邏輯”與“學習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創(chuàng)設的情境中,每個學生都積極投入探究過程,學生在疑惑中探索,在探索中思考,在思考中發(fā)現,大部分學生積極性高漲,通過看別人怎樣觀察,

  聽別人怎樣介紹,也學到了知識.

  2.思不足

  學生練習:在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的考察,以采用

  學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。

  語言組織:

  在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。

  教學環(huán)節(jié)(的完整):

  在授課過程中要注意到教學環(huán)節(jié)設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業(yè)等幾個重要的環(huán)節(jié),由于時間的關系沒有來得及小結造成教學設計不完善。在以后的教學過程中要注意這些環(huán)節(jié)。

  以上是我對這節(jié)課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。

高中數學說課稿 篇5

  一、教材分析

  1、教材內容

  本節(jié)課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2.1.3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題.

  2、教材所處地位、作用

  函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質.通過對本節(jié)課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題.通過上述活動,加深對函數本質的認識.函數的單調性既是學生學過的函數概念的延續(xù)和拓展,又是后續(xù)研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節(jié)教學過程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學思想方法.

  3、教學目標

 。1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性

  的方法;

 。2)過程與方法:從實際生活問題出發(fā),引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養(yǎng)學生發(fā)現問題、分析問題、解決問題的能力.

 。3)情感態(tài)度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養(yǎng)學生直覺觀察、探索發(fā)現、科學論證的良好的數學思維品質.

  4、重點與難點

  教學重點(1)函數單調性的概念;

  (2)運用函數單調性的定義判斷一些函數的單調性.

  教學難點(1)函數單調性的知識形成;

 。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.

  二、教法分析與學法指導

  本節(jié)課是一節(jié)較為抽象的數學概念課,因此,教法上要注意:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數學與現實的距離,激發(fā)了學生求知欲,調動了學生主體參與的積極性.

  2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用.具體體現在設問、講評和規(guī)范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達.

  4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性.

  在學法上:

  1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現問題、研究問題和解決問題的能力.

  2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍.

高中數學說課稿 篇6

  1. 教材分析

  1-1教學內容及包含的知識點

  (1) 本課內容是高中數學第二冊第七章第三節(jié)《兩條直線的位置關系》的最后一個內容。

  (2) 包含知識點:點到直線的距離公式和兩平行線的距離公式。

  1-2教材所處地位、作用和前后聯系

  本節(jié)課是兩條直線位置關系的最后一個內容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的.組合圖形中)提供一套工具。

  可見,本課有承前啟后的作用。

  1-3教學大綱要求

  掌握點到直線的距離公式

  1-4高考大綱要求及在高考中的顯示形式

  掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。

  1-5教學目標及確定依據

  教學目標

  (1) 掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。

  (2) 培養(yǎng)學生探究性思維方法和由特殊到一般的研究能力。

  (3) 認識事物之間相互聯系、互相轉化的辯證法思想,培養(yǎng)學生轉化知識的能力。

  (4) 滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發(fā)展。

  確定依據:

  中華人民共和國教育部制定的《全日制普通高級中學數學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

  1-6教學重點、難點、關鍵

  (1) 重點:點到直線的距離公式

  確定依據:由本節(jié)在教材中的地位確定

  (2) 難點:點到直線的距離公式的推導

  確定依據:根據定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現。

  分析“嘗試性題組”解題思路可突破難點

  (3)關鍵:實現兩個轉化。一是將點線距離轉化為定點到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點的距離。

  2.教法

  2-1發(fā)現法:本節(jié)課為了培養(yǎng)學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發(fā)學生分析、發(fā)現、比較、論證等,從而形成完整的數學模型。

  確定依據:

  (1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。

  (2)事物之間相互聯系,相互轉化的辯證法思想。

  2-2教具:多媒體和黑板等傳統(tǒng)教具

  3. 學法

  3-1發(fā)現法:豐富學生的數學活動,學生經過練習、觀察、分析、探索等步驟,自己發(fā)現解決問題的方法,比較論證后得到一般性結論,形成完整的數學模型,再運用所得理論和方法去解決問題。

  一句話:還課堂以生命力,還學生以活力。

  3-2學情:

  (1)知識能力狀況,本節(jié)為兩線位置關系的最后一個內容,在這之前學生已經系統(tǒng)的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。

  (2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。

  (3)生活經驗:數學源于生活,生活中的點線距隨處可見,怎樣將實際問題數學化,是每個追求成長、追求發(fā)展的學生所渴求的一種研究能力。豐富的課堂數學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養(yǎng)能力。

  3-3學具:直尺、三角板

  4. 教學評價

  學生完成反思性學習報告,書寫要求:

  (1) 整理知識結構。

  (2) 總結所學到的基本知識,技能和數學思想方法。

  (3) 總結在學習過程中的經驗,發(fā)明發(fā)現,學習障礙等,說明產生障礙的原因。

  (4) 談談你對老師教法的建議和要求。

  作用:

  (1) 通過反思使學生對所學知識系統(tǒng)化。反思的過程實際上是學生思維內化,知識深化和認知牢固化的一個心理活動過程。

  (2) 報告的寫作本身就是一種創(chuàng)造性活動。

  (3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調整,及時進行補償性教學。

  5. 板書設計

  (略)

  6. 教學的反思總結

  心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。

高中數學說課稿 篇7

  教學目標

  A、知識目標:

  掌握等差數列前n項和公式的推導方法;掌握公式的運用。

  B、能力目標:

 。1)通過公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯想、歸納、分析、綜合和邏輯推理的能力。

 。2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數列的求和公式,培養(yǎng)學生類比思維能力。

 。3)通過對公式從不同角度、不同側面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。

  C、情感目標:(數學文化價值)

 。1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

 。2)通過公式的運用,樹立學生"大眾教學"的思想意識。

 。3)通過生動具體的現實問題,令人著迷的數學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數學的心理體驗,產生熱愛數學的情感。

  教學重點:

  等差數列前n項和的公式。

  教學難點:

  等差數列前n項和的公式的靈活運用。

  教學方法

  啟發(fā)、討論、引導式。

  教具:

  現代教育多媒體技術。

  教學過程

  一、創(chuàng)設情景,導入新課。

  師:上幾節(jié),我們已經掌握了等差數列的概念、通項公式及其有關性質,今天要進一步研究等差數列的前n項和公式。提起數列求和,我們自然會想到德國偉大的數學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數學習題:"把從1到100的自然數加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

  例1,計算:1+2+3+4+5+6+7+8+9+10。

  這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。

  生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

  生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

  上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

  10個

  所以我們得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學的方法相類似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學們想一下,上面的方法用到等差數列的哪一個性質呢?

  生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。

  二、教授新課(嘗試推導)

  師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可寫成

  Sn=an+an—1+。。。。。。a2+a1

  兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n個

  =n(a1+an)

  所以Sn=(I)

  師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)兩個式子稱為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學生總結:這些公式中出現了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。

  三、公式的應用(通過實例演練,形成技能)。

  1、直接代公式(讓學生迅速熟悉公式,即用基本量例2、計算:

 。1)1+2+3+。。。。。。+n

 。2)1+3+5+。。。。。。+(2n—1)

 。3)2+4+6+。。。。。。+2n

  (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  請同學們先完成(1)—(3),并請一位同學回答。

  生5:直接利用等差數列求和公式(I),得

 。1)1+2+3+。。。。。。+n=

  (2)1+3+5+。。。。。。+(2n—1)=

 。3)2+4+6+。。。。。。+2n==n(n+1)

  師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發(fā)言解答。

  生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開,可看成兩個等差數列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上題雖然不是等差數列,但有一個規(guī)律,兩項結合都為—1,故可得另一解法:

  原式=—1—1—。。。。。。—1=—n

  n個

  師:很好!在解題時我們應仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數列的項數,否則會引起錯解。

  例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  師:通過上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據例3自己編題,作為本節(jié)的課外練習題,以便下節(jié)課交流。

  師:(繼續(xù)引導學生,將第(2)小題改編)

 、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數列性質,用整體思想考慮求a1+a10的值。

  2、用整體觀點認識Sn公式。

  例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學生解)

  師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現了什么?

  生10:根據等差數列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  師:對。ê唵涡〗Y)這個題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數學問題的體現。

  師:由于時間關系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數,那么從二次(或一次)的函數的觀點如何來認識Sn公式后,這留給同學們課外繼續(xù)思考。

  最后請大家課外思考Sn公式(1)的逆命題:

  已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說明理由。

  四、小結與作業(yè)。

  師:接下來請同學們一起來小結本節(jié)課所講的內容。

  生11:1、用倒序相加法推導等差數列前n項和公式。

  2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。

  生12:1、運用Sn公式要注意此等差數列的項數n的值。

  2、具體用Sn公式時,要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

  3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數列的有關性質,看能否用整體思想的方法求a1+an的值。

  師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現更多的性質,主動積極地去學習。

  本節(jié)所滲透的數學方法;觀察、嘗試、分析、歸納、類比、特定系數等。

  數學思想:類比思想、整體思想、方程思想、函數思想等。

  作業(yè):P49:13、14、15、17

高中數學說課稿 篇8

  我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節(jié)教材揭示了幾何中的形與代數中的數相統(tǒng)一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節(jié)“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!

  根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

  二、教學目標

  根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:

  知識目標:

  1、了解曲線上的點與方程的解之間的一一對應關系;

  2、初步領會“曲線的方程”與“方程的曲線”的概念;

  3、學會根據已有的情景資料找規(guī)律,進而分析、判斷、歸納結論;

  4、強化“形”與“數”一致并相互轉化的思想方法。

  能力目標:

  1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;

  2、在形成曲線和方程的概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;

  3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發(fā)展應用意識。

  情感目標:

  1、通過概念的引入,讓學生感受從特殊到一般的認知規(guī)律;

  2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創(chuàng)新的科學精神。

  三、重難點突破

  “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規(guī)定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

  怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節(jié)課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。

  四、學情分析

  此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節(jié)課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區(qū)別。

【有關高中數學說課稿范文匯編8篇】相關文章:

有關高中數學說課稿范文匯編9篇08-15

有關高中數學說課稿范文匯編五篇08-08

有關高中數學說課稿范文匯編七篇08-20

有關高中數學說課稿范文匯編十篇08-19

有關高中數學說課稿范文5篇07-23

有關高中數學說課稿模板匯編五篇07-30

有關高中數學說課稿模板匯編八篇07-02

高中數學經典說課稿范文06-24

有關高中數學說課稿范文合集9篇08-01