久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學說課稿

時間:2021-08-18 09:59:41 高中說課稿 我要投稿

關(guān)于高中數(shù)學說課稿范文集錦十篇

  作為一名專為他人授業(yè)解惑的人民教師,有必要進行細致的說課稿準備工作,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。說課稿要怎么寫呢?下面是小編幫大家整理的高中數(shù)學說課稿10篇,希望對大家有所幫助。

關(guān)于高中數(shù)學說課稿范文集錦十篇

高中數(shù)學說課稿 篇1

  一、說教材

  1、 教材的地位和作用

  《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學)。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學課本中已現(xiàn)了一些數(shù)和點的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學生并不清楚“集合”在數(shù)學中的含義,集合是一個基礎(chǔ)性的概念,也是也是中職數(shù)學的開篇,是我們后續(xù)學習的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學習,能讓學生領(lǐng)會到數(shù)學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發(fā)展學生運用數(shù)學語言交流的能力。

  2、 教學目標

 。1)知識目標:a、通過實例了解集合的含義,理解集合以及有關(guān)概念;

  b、初步體會元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。

  (2)能力目標:a、讓學生感知數(shù)學知識與實際生活得密切聯(lián)系,培養(yǎng)學生解決實際的能力;

  b、學會借助實例分析,探究數(shù)學問題,發(fā)展學生的觀察歸納能力。

 。3)情感目標:a、通過聯(lián)系生活,提高學生學習數(shù)學的積極性,形成積極的學習態(tài)度;

  b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的理性和嚴謹。

  3、重點和難點

  重點:集合的概念,元素與集合的關(guān)系。

  難點:準確理解集合的概念。

  二、學情分析(說學情)

  對于中職生來說,學生的數(shù)學基礎(chǔ)相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數(shù)學的自信心不強,學習積極性不高,有厭學情緒。

  三、說教法

  針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發(fā),提高學生的注意力和激發(fā)學生的學習興趣。在創(chuàng)設(shè)情境認知策略上給予適當?shù)狞c撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎(chǔ)上教師層層深入,啟發(fā)學生積極思維,逐步提升學生的數(shù)學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。

  四、學習指導(說學法)

  教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據(jù)數(shù)學的特點這節(jié)課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。

  五、教學過程

  1、引入新課:

  a、創(chuàng)設(shè)情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。

  b、介紹集合論的創(chuàng)始者康托爾

  2、究竟什么是集合?(實例探究)切合學生現(xiàn)有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發(fā),引導學生尋找實例中的共同特征,培養(yǎng)學生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

  3、集合的概念,本課的重點。結(jié)合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現(xiàn)由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關(guān)系做好鋪墊。

  教師在這一環(huán)節(jié)做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

  4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。

  5、 集合的符號記法,為本節(jié)重點做好鋪墊。

  6、 從實例入行手,探索元素和集合的關(guān)系,學生能用文字語言描述,如何用數(shù)學語言描述,給出元素與集合關(guān)系符號表示,在這個環(huán)節(jié)教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。

  7、 思考交流本課的重要環(huán)節(jié)在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。

  8、 從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。

  9、 學生練習:通過練習,識記常見數(shù)集的記法,同時進一步鞏固元素與集合間的關(guān)系。

  10、知識的實際應用:

  問題不難,落實課本能力目標,培養(yǎng)學生運用數(shù)學的意識和能力初步培養(yǎng)學生應用集合的眼光觀看世界。

  11、課堂小節(jié)

  以學生小節(jié)為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內(nèi)容,要學會總結(jié)反思,使學生的認識進一步升華,培養(yǎng)學生的鬼納總結(jié)能力。

  六、評價

  教學評價的及時能有效調(diào)動課堂氣氛,感染學生的情緒,對課堂教學發(fā)揮著積極作用,教學過程遵重學生之間的差異培養(yǎng)學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環(huán)節(jié)。

  七、教學反思

  1、 通過現(xiàn)實生活中的實例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學生理解接受。

  2、 啟發(fā)探究教學,營造學生的學習氛圍,培養(yǎng)學生自主學習,合作交流的能力。

  八、板書設(shè)計

高中數(shù)學說課稿 篇2

  一、教材分析

  本節(jié)是人教A版高中數(shù)學必修三第二章《統(tǒng)計》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。

  從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點,也是本章內(nèi)容的難點之一。線性回歸是最簡單的回歸分析,學好回歸分析是學好統(tǒng)計學的重要基礎(chǔ)。

  二、教學目標

  根據(jù)課標的要求及前面的分析,結(jié)合高二學生的認知特點確定本節(jié)課的教學目標如下:

  知識與技能:

  1. 知道最小二乘法和回歸分析的思想;

  2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

  過程與方法:

  經(jīng)歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數(shù)學應用和使用技術(shù)的意識。

  情感態(tài)度與價值觀

  通過合作學習,養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

  三、重點難點分析:

  根據(jù)目標分析,確定教學重點和難點如下:

  教學重點:

  1. 知道最小二乘法和回歸分析的思想;

  2.會求回歸直線

  教學難點:

  建立回歸思想,會求回歸直線

  四、教學設(shè)計

  提出問題

  理論探究

  驗證結(jié)論

  小結(jié)提升

  應用實踐

  作業(yè)設(shè)計

  教學環(huán)節(jié)

  內(nèi)容及說明

  創(chuàng)設(shè)情境

  探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題與引導設(shè)計

  師生活動

  設(shè)計意圖

  問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關(guān)還是負相關(guān)?

  教師提問,學生

  通過動手操作得

  出散點圖并回答

  以舊“探”新:對舊的知識進行簡要的提問復習,為本節(jié)課學生能夠更好的建構(gòu)新的知識做好充分的準備;尤其為一些后進生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。

  教師引導:通過上節(jié)課的學習,我們知道散點圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學們根據(jù)得出的散點圖,思考下面的問題2.

  問題2. 甲同學判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學判斷可能為25,而丙同學則判斷可能為37,你對甲,

  乙,丙三個同學的判斷有什么看法?

  學生能夠表達自己的看法。有的學生可能會認為乙同學的判斷是錯誤的;有的學生可能認為甲乙丙三個同學的判斷都是對的,答案不唯一

  該問題具有探究性、啟發(fā)性和開放性。鼓勵學生大膽表達自己的看法。通過設(shè)計該問題,引導學生自己發(fā)現(xiàn)問題,注意到散點圖中點的分布具有一定規(guī)律,體會觀測點與回歸直線的關(guān)系;進而引起學生的對本節(jié)課內(nèi)容的興趣。

  問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多

  在小組討論的形式下和比較哪個小組提出的問題多,學生之間會充分的進行交流,提出問題

  通過小組討論比較,調(diào)動學生的學習積極性和興趣,活躍課堂氣氛,達到學生自己提出問題的效果,培養(yǎng)學生的學生創(chuàng)新思維和問題意識。

  學生可能提出的問題:

 、贋槭裁醇、丙同學的判斷結(jié)果正確的可能性較大,而乙同學判斷結(jié)果正確的可能性較小?

 、谀橙四挲g在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?

 、圻@些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?

  ④怎樣用數(shù)學的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學生“火熱的思考”成果

高中數(shù)學說課稿 篇3

  各位老師你們好!今天我要為大家講的課題是

  首先,我對本節(jié)教材進行一些分析:

  一、教材分析(說教材):

  1. 教材所處的地位和作用:

  本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學教材第 冊第 章第 節(jié)內(nèi)容。在此之前學生已學習了 基礎(chǔ),這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學科和今后的學習打下基礎(chǔ)。

  2. 教育教學目標:

  根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:

 。1)知識目標: (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。

  3. 重點,難點以及確定依據(jù):

  本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學重點、難點

  重點: 通過 突出重點

  難點: 通過 突破難點

  關(guān)鍵:

  下面,為了講清重難上點,使學生能達到本節(jié)課設(shè)定的目標,再從教法和學法上談?wù)劊?/p>

  二、教學策略(說教法)

  1. 教學手段:

  如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點: 應著重采用 的教學方法。

  2. 教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎(chǔ)差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關(guān)的數(shù)學知識,學習基礎(chǔ)性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

  3. 學情分析:(說學法)

  我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

 。1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學

  生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散

 。2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

 。3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力

  最后我來具體談?wù)勥@一堂課的教學過程:

  4. 教學程序及設(shè)想:

 。1)由 引入:把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

 。2)由實例得出本課新的知識點

 。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。

 。4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

 。5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。

 。6)變式延伸,進行重構(gòu),重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

 。7)板書

  (8)布置作業(yè)。 針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎(chǔ)知識,又使學有余力的學生有所提高,

  教學程序:

  課堂結(jié)構(gòu):復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分

高中數(shù)學說課稿 篇4

  一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領(lǐng)域種得到應用。

  二.目標分析:

  教學重點.難點

  重點:集合的含義與表示方法.

  難點:表示法的恰當選擇.

  教學目標

  l.知識與技能

  (1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;

  (2)知道常用數(shù)集及其專用記號;

  (3)了解集合中元素的確定性.互異性.無序性;

  (4)會用集合語言表示有關(guān)數(shù)學對象;

  2.過程與方法

  (1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

  (2)讓學生歸納整理本節(jié)所學知識.

  3.情感.態(tài)度與價值觀

  使學生感受到學習集合的必要性,增強學習的積極性.

  三.教法分析

  1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.

  2.教學手段:在教學中使用投影儀來輔助教學.

  四.過程分析

  (一)創(chuàng)設(shè)情景,揭示課題

  1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。

  (2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?

  引導學生互相交流.與此同時,教師對學生的活動給予評價.

  2.活動:(1)列舉生活中的集合的例子;

  (2)分析、概括各實例的共同特征

  由此引出這節(jié)要學的內(nèi)容。

  設(shè)計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊

 。ǘ┭刑叫轮(gòu)概念

  1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:

  (1)1-20以內(nèi)的所有質(zhì)數(shù);

  (2)我國古代的四大發(fā)明;

  (3)所有的安理會常任理事國;

  (4)所有的正方形;

  (5)海南省在xxxx年9月之前建成的所有立交橋;

  (6)到一個角的兩邊距離相等的所有的點;

  (7)國興中學xxxx年9月入學的高一學生的全體.

  2.教師組織學生分組討論:這7個實例的共同特征是什么?

  3.每個小組選出--位同學發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.

  一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

  4.教師指出:集合常用大寫字母A,B,c,D,...表示,元素常用小寫字母...表示.

  設(shè)計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神

  (三)質(zhì)疑答辯,發(fā)展思維

  1.教師引導學生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

  2.教師組織引導學生思考以下問題:

  判斷以下元素的全體是否組成集合,并說明理由:

  (1)大于3小于11的偶數(shù);

  (2)我國的小河流.

  讓學生充分發(fā)表自己的建解.

  3.讓學生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

  4.教師提出問題,讓學生思考

  (1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關(guān)系?由此引導學生得出元素與集合的關(guān)系有兩種:屬于和不屬于.[來源:Z,xx,k.com]

  如果是集合A的元素,就說屬于集合A,記作.

  如果不是集合A的元素,就說不屬于集合A,記作.

  (2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學符號分別表示.

  (3)讓學生完成教材第6頁練習第1題.

  5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1A組第1題.

  6.教師引導學生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:

  (1)要表示一個集合共有幾種方式?

  (2)試比較自然語言.列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

  (3)如何根據(jù)問題選擇適當?shù)募媳硎痉?

  使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

  設(shè)計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

  (四)鞏固深化,反饋矯正

  教師投影學習:

  (1)用自然語言描述集合{1,3,5,7,9};

  (2)用例舉法表示集合

  (3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.

  設(shè)計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

  (五)歸納小結(jié),布置作業(yè)[來源:Zxxk.com]

  小結(jié):在師生互動中,讓學生了解或體會下例問題:

  1.本節(jié)課我們學習了哪些知識內(nèi)容?

  2.你認為學習集合有什么意義?

  3.選擇集合的表示法時應注意些什么?

  設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):

  1.課后書面作業(yè):第13頁習題1.1A組第4題.

  2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學們通過預習教材.

  五.板書分析

  PPT

  集合的含義與表示

  定義例1

  集合×××××××

  ××××××××××××××

  元素×××××××

  ×××××××例2

  元素與集合的關(guān)系×××××××

  ××××××××××××××

  作業(yè)××××××××××××××

高中數(shù)學說課稿 篇5

  我將從教學理念;教材分析;教學目標;教學過程;教法、學法;教學評價六個方面來陳述我對本節(jié)課的設(shè)計方案。

  一、教學理念

  新的課程標準明確指出“數(shù)學是人類文化的重要組成部分,構(gòu)成了公民所必須具備的一種基本素質(zhì)。”其含義就是:我們不僅要重視數(shù)學的應用價值,更要注重其思維價值和人文價值。

  因此,創(chuàng)造性地使用教材,積極開發(fā)、利用各種教學資源,創(chuàng)設(shè)教學情境,讓學生通過主動參與、積極思考、與人合作交流和創(chuàng)新等過程,獲得情感、能力、知識的全面發(fā)展。本節(jié)課力圖打破常規(guī),充分體現(xiàn)以學生為本,全方位培養(yǎng)、提高學生素質(zhì),實現(xiàn)課程觀念、教學方式、學習方式的轉(zhuǎn)變。

  二、教材分析

  三角函數(shù)是中學數(shù)學的重要內(nèi)容之一,它既是解決生產(chǎn)實際問題的工具,又是學習高等數(shù)學及其它學科的基礎(chǔ)。本節(jié)課是在學習了任意角的三角函數(shù),兩角和與差的三角函數(shù)以及正、余弦函數(shù)的圖象和性質(zhì)后,進一步研究函數(shù)y=Asin(ωx+φ)的簡圖的畫法,由此揭示這類函數(shù)的圖象與正弦曲線的關(guān)系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進一步理解正、余弦函數(shù)的性質(zhì),它是研究函數(shù)圖象變換的一個延伸,也是研究函數(shù)性質(zhì)的一個直觀反映。共3課時,本節(jié)課是繼學習完振幅、周期、初相變換后的第二課時。

  本節(jié)課倡導學生自主探究,在教師的引導下,通過五點作圖法正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律是本節(jié)課的重點。

  難點是對周期變換、相位變換先后順序調(diào)整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個字母x而言的變換成為突破本節(jié)課教學難點的關(guān)鍵。

  依據(jù)《課標》,根據(jù)本節(jié)課內(nèi)容和學生的實際,我確定如下教學目標。

  三、教學目標

  [知識與技能]

  通過“五點作圖法”正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律,能用五點作圖法和圖象變換法畫出函數(shù)y=Asin(ωx+φ)的簡圖,能舉一反三地畫出函數(shù)y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡圖。

 。圻^程與方法]

  通過引導學生對函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律的探索,讓學生體會到由簡單到復雜,特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法。

 。矍楦袘B(tài)度與價值觀]

  課堂中,通過對問題的自主探究,培養(yǎng)學生的獨立意識和獨立思考能力;小組交流中,學會合作意識;在解決問題的難點時,培養(yǎng)學生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學生追求真理,樂于創(chuàng)新的情感需求,引發(fā)學生渴求知識的強烈愿望,樹立科學的人生觀、價值觀。

  四、教學過程(六問三練)

  1、設(shè)置情境

  《函數(shù)y=Asin(ωx+φ)的圖象(第二課時)》說課稿。

高中數(shù)學說課稿 篇6

  各位評委,老師們:大家好!

  很高興參加這次說課活動。這對我來說也是一次難得的學習和鍛煉的機會,感謝各位老師在百忙之中來此予以指導。希望各位評委和老師們對我的說課內(nèi)容提出寶貴意見。

  我說課的內(nèi)容是<平面向量>的教學,所用的教材是人民教育出版社出版的全日制普通高級中學教科書(試驗修訂本—必修)<數(shù)學>第一冊下,教學內(nèi)容為第96頁至98頁第五章第一節(jié)。本校是浙江省一級重點中學,學生基礎(chǔ)相對較好。我在進行教學設(shè)計時,也充分考慮到了這一點。

  下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設(shè)計四個方面來匯報我對這節(jié)課的教學設(shè)想。

  一說教材

  (1)地位和作用

  向量是近代數(shù)學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運算(運算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實際背景,在數(shù)學和物理學科中具有廣泛的應用。

  平面向量的基本概念是在學生了解了物理學中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進一步對向量的深入學習。為學習向量的知識體系奠定了知識和方法基礎(chǔ)。

 。2)教學結(jié)構(gòu)的調(diào)整

  課本在這一部分內(nèi)容的教學為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點說明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學中我將教學的順序做如下的調(diào)整:將本節(jié)教學中認知過程的教學內(nèi)容適當集中,以突出這節(jié)課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成。

 。3)重點,難點,關(guān)鍵

  由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學生學習本章的基礎(chǔ)。為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點。本節(jié)課是為高一后半學期學生設(shè)計的',盡管此時的學生已經(jīng)有了一定的學習方法和習慣,但根據(jù)以往的教學經(jīng)驗,多數(shù)學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節(jié)課的難點。而解決這一難點的關(guān)鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解。

  二說教學目標的確定

  根據(jù)本課教材的特點,新大綱對本節(jié)課的教學要求,學生身心發(fā)展的合理需要,我從三個方面確定了以下教學目標:

  (1)基礎(chǔ)知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據(jù)圖形判定向量是否平行,共線,相等。

 。2)能力訓練目標:培養(yǎng)學生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學生觀察問題,分析問題,解決問題的能力。

  (3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。

  三說教學方法的選擇

  Ⅰ教學方法

  本節(jié)課我采用了”啟發(fā)探究式的教學方法,根據(jù)本課教材的特點和學生的實際情況在教學中突出以下兩點:

  (1)由教材的特點確立類比思維為教學的主線。

  從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學中的有向線段,矢量的概念類似。因此在教學中運用類比作為思維的主線進行教學。讓學生充分體會數(shù)學知識與其他學科之間的聯(lián)系以及發(fā)生與發(fā)展的過程。

 。2)由學生的特點確立自主探索式的學習方法

  通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發(fā)學生的學習興趣,另外,學生都有表現(xiàn)自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情?紤]到我校學生的基礎(chǔ)較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創(chuàng)設(shè)問題情境,啟發(fā)引導學生運用科學的思維方法進行自主探究。將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用。

  Ⅱ教學手段

  本節(jié)課中,除使用常規(guī)的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對概念的理解和難點的突破。

  四教學過程的設(shè)計

 、裰R引入階段———提出學習課題,明確學習目標

 。1)創(chuàng)設(shè)情境——引入概念

  數(shù)學學習應該與學生的生活融合起來,從學生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學、探究數(shù)學、認識并掌握數(shù)學。

  由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學生思維活躍,想象力豐富的特點,有利于激發(fā)學生的學習興趣。

 。2)觀察歸納——形成概念

  由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進行設(shè)計,引導學生概括總結(jié)出本課新的知識點:向量的概念及其幾何表示。

 。3)討論研究——深化概念

  在得到概念后進行歸納,深化,之后向?qū)W生提出以下三個問題:

 、傧蛄康囊厥鞘裁?

 、谙蛄恐g能否比較大小?

 、巯蛄颗c數(shù)量的區(qū)別是什么?

  同時指出這就是本節(jié)課我們要研究和學習的主題。

 、蛑R探索階段———探索平面向量的平行向量。相等向量等概念

  (1)總結(jié)反思——提高認識

  方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

 。2)即時訓練—鞏固新知

  為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設(shè)計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。

 。劬毩1]判斷下列命題是否正確,若不正確,請簡述理由.

 、傧蛄颗c是共線向量,則A、B、C、D四點必在一直線上;

 、趩挝幌蛄慷枷嗟;

 、廴我幌蛄颗c它的相反向量不相等;

 、芩倪呅蜛BCD是平行四邊形的充要條件是=;

 、菽0是一個向量方向不確定的充要條件;

 、薰簿的向量,若起點不同,則終點一定不同.

 。劬毩2]下列命題正確的是( )

  A.a(chǎn)與b共線,b與c共線,則a與c也共線

  B.任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點

  C.向量a與b不共線,則a與b都是非零向量

  D.有相同起點的兩個非零向量不平行

 、笾R應用階段————共線向量,相等向量等概念的初步應用

  在本階段的教學中,我采用的是課本上一道典型的例題:在一個復雜圖形中觀察,辨認平行,相等的有向線段。選用本題的目的是讓學生進行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。

  例如圖所示,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)

  具體教學安排如下:

 。1)分析解決問題

  先引導學生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質(zhì):兩個向量只有當它們的模相等,同時方向又相同時,才能稱它們相等。進而進行正確的辨認,直至最終解決問題。

  (2)歸納解題方法

  主要引導學生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相

  等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。

 、魧W習,小結(jié)階段———歸納知識方法,布置課后作業(yè)

  本階段通過學習小結(jié)進行課堂教學的反饋,組織和指導學生歸納知識,技能,方法的一般規(guī)律,為后續(xù)學習打好基礎(chǔ)。

  具體的教學安排如下:

  (1)知識,方法小結(jié)在知識層面上我首先引導學生回顧本節(jié)課的主要內(nèi)容,提醒學生要抓住向量的本質(zhì):大小與方向,對它們進行類比,加深對每個概念的理解。

  在方法層面上我將帶領(lǐng)學生回顧探索過程中用到的思維方法和數(shù)學方法如:

  類比,數(shù)形結(jié)合,等價轉(zhuǎn)化等進行強調(diào)。

  (2)布置課后作業(yè)

  閱讀教材96至97頁內(nèi)容,整理課堂筆記,習題5。1第1,2,3題。

高中數(shù)學說課稿 篇7

  今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學法和教學程序四個方面對本課的教學設(shè)計進行說明。

  一、說教材

  1、本節(jié)在教材中的地位和作用:

  本節(jié)是棱柱的后續(xù)內(nèi)容,又是學習球的必要基礎(chǔ)。第一課時的教學目的是讓學生掌握棱錐的一些必要的基礎(chǔ)知識,同時培養(yǎng)學生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學家達爾文說:“最有價值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節(jié)課培養(yǎng)學生學習方法、提高學習能力。

  2. 教學目標確定:

  (1)能力訓練要求

 、偈箤W生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點、高的概念。

 、谑箤W生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

  (2)德育滲透目標

 、倥囵B(yǎng)學生善于通過觀察分析實物形狀到歸納其性質(zhì)的能力。

 、谔岣邔W生對事物的感性認識到理性認識的能力。

 、叟囵B(yǎng)學生“理論源于實踐,用于實踐”的觀點。

  3. 教學重點、難點確定:

  重 點:1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

  難 點:培養(yǎng)學生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

  二、說教學方法和手段

  1、教法:

  “以學生參與為標志,以啟迪學生思維,培養(yǎng)學生創(chuàng)新能力為核心”。

  在教學中根據(jù)高中生心理特點和教學進度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結(jié)合,發(fā)揮教師主導作用,體現(xiàn)學生主體地位。

  2、教學手段:

  根據(jù)《教學大綱》中“堅持啟發(fā)式,反對注入式”的教學要求,針對本節(jié)課概念性強,思維量大,整節(jié)課以啟發(fā)學生觀察思考、分析討論為主,采用“多媒體引導點撥”的教學方法以多媒體演示為載體,以“引導思考”為核心,設(shè)計課件展示,并引導學生沿著積極的思維方向,逐步達到即定的教學目標,發(fā)展學生的邏輯思維能力;學生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。

  三、說學法:

  這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規(guī)律,啟發(fā)學生反復思考,不斷內(nèi)化成為自己的認知結(jié)構(gòu)。

  四、 學程序:

  [復習引入新課]

  1.棱柱的性質(zhì):

 。1)側(cè)棱都相等,側(cè)面是平行四邊形

  (2)兩個底面與平行于底面的截面是全等的多邊形

 。3)過不相鄰的兩條側(cè)棱的截面是平行四邊形

  2.幾個重要的四棱柱:

  平行六面體、直平行六面體、長方體、正方體

  思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

 。1).棱錐及其底面、側(cè)面、側(cè)棱、頂點、高、對角面的概念

 。2).棱錐的表示方法、分類

  2、棱錐的性質(zhì)

  (1). 截面性質(zhì)定理:

  如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側(cè)面積比也等于它們對應高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質(zhì):

  正棱錐的定義:

 、俚酌媸钦噙呅

 、陧旤c在底面的射影是底面的中心

 、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

 、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;

  棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

  引申:

  ①正棱錐的側(cè)棱與底面所成的角都相等;

 、谡忮F的側(cè)面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關(guān)系

  下面我們結(jié)合圖形,進一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。

  引申:

 、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點?

 。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)

 、谌舴謩e假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請試通過三角形得出以上各元素間的關(guān)系式。

 。ㄕn后思考題)

  [例題分析]

  例1.若一個正棱錐每一個側(cè)面的頂角都是600,則這個棱錐一定不是( )

  A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

  (答案:D)

  例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點且平行于底面的截面△A’B’C’的面積。

  ﹙解析及圖略﹚

  例3.已知正四棱錐的棱長和底面邊長均為a,求:

 。1)側(cè)面與底面所成角α的余弦(2)相鄰兩個側(cè)面所成角β的余弦

  ﹙解析及圖略﹚

  [課堂練習]

  1、 知一個正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。

  ﹙解析及圖略﹚

  2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。

  ﹙解析及圖略﹚

  [課堂小結(jié)]

  一:棱錐的基本概念及表示、分類

  二:棱錐的性質(zhì)

  截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應高的平方比、等于它們的底面積之比。

  2.正棱錐的定義及基本性質(zhì)

  正棱錐的定義:

  ①底面是正多邊形

 、陧旤c在底面的射影是底面的中心

 。1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高

  相等,它們叫做正棱錐的斜高;

 。2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

  引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

 、谡忮F的側(cè)面與底面所成的二面角相等;

 、壅忮F中各元素間的關(guān)系

  [課后作業(yè)]

  1:課本P52 習題9.8 : 2、 4

  2:課時訓練:訓練一

高中數(shù)學說課稿 篇8

  開始:各位專家領(lǐng)導, 好!

  今天我將要為大家講的課題是

  首先,我對本節(jié)教材進行一些分析

  一、教材結(jié)構(gòu)與內(nèi)容簡析

  本節(jié)內(nèi)容在全書及章節(jié)的地位:《 》是高中數(shù)學新教材第 冊( )第 章第 節(jié)。在此之前,學生已學習了

  ,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。

  數(shù)學思想方法分析:作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向?qū)W生:

  二、 教學目標

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:

  1 基礎(chǔ)知識目標:

  2 能力訓練目標:

  3 創(chuàng)新素質(zhì)目標:

  4 個性品質(zhì)目標:

  三、 教學重點、難點、關(guān)鍵

  本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學重點、難點

  重點: 通過 突出重點

  難點: 通過 突破難點

  關(guān)鍵:

  下面,為了講清重點、難點,使學生能達到本節(jié)設(shè)定的教學目標,我再從教法和學法上談?wù)劊?/p>

  四、 教法

  數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此,在教學中,不僅要使學生

  “知其然”而且要使學生“知其所以然”,

  我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程;诒竟(jié)課的特點:

  ,應著重采用 的教學方法。即:

  五、 學法

  我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

  1、理論:

  2、實踐:

  3、能力:

  最后我來具體談一談這一堂課的教學過程:

  六、 教學程序及設(shè)想

  1、由 引入:

  把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。

  在實際情況下進行學習,可以使學生利用已有知識與經(jīng)驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  對于本題:

  2、由實例得出本課新的知識點是:

  3、講解例題。

  我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:

  4、能力訓練。

  課后練習

  使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

  5、總結(jié)結(jié)論,強化認識。

  知識性內(nèi)容的小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì);數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質(zhì)目標。

  6、變式延伸,進行重構(gòu)。

  重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。

  7、板書。

  8、布置作業(yè)。

  針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎(chǔ)知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。

  結(jié)束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學設(shè)想及其根據(jù)的新的教學研究形式。以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領(lǐng)導對本堂說課提出寶貴意見。

  注意時間掌握

  六、注意靈活導入新知識點。

  電腦課件

  使用投影

  根據(jù)時間進行增刪

高中數(shù)學說課稿 篇9

  一、背景分析

  1、學習任務(wù)分析:充要條件是中學數(shù)學中最重要的數(shù)學概念之一,它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。

  教學重點:充分條件、必要條件和充要條件三個概念的定義。

  2、學生情況分析:從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.因此,新教材在第一章的小結(jié)與復習中,把學生的學習要求規(guī)定為“初步掌握充要條件”(注意:新教學大綱的教學目標是“掌握充要條件的意義”),這是比較切合教學實際的.由此可見,教師在充要條件這一內(nèi)容的新授教學時,不可拔高要求追求一步到位,而要在今后的教學中滾動式逐步深化,使之與學生的知識結(jié)構(gòu)同步發(fā)展完善。

  教學難點:“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.根據(jù)多年教學實踐,學生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結(jié)論,怎么又變成條件了呢?對這學生難于理解。

  教學關(guān)鍵:找出A、B,根據(jù)定義判斷A=B與B=A是否成立。教學中,要強調(diào)先找出A、B,否則,學生可能會對必要條件難以理解。

  二、教學目標設(shè)計:

 。ㄒ唬┲R目標:

  1、正確理解充分條件、必要條件、充要條件三個概念。

  2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關(guān)系。

  (二)能力目標:

  1、培養(yǎng)學生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。

  2、培養(yǎng)學生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結(jié)出一般規(guī)律。

 。ㄈ┣楦心繕耍

  1、通過以學生為主體的教學方法,讓學生自己構(gòu)造數(shù)學命題,發(fā)展體驗獲取知識的感受。

  2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學們的辯證唯物主義觀點。

  3、通過“會觀察”,“敢歸納”,“善建構(gòu)”,培養(yǎng)學生自主學習,勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現(xiàn)出濃厚的興趣和不畏困難、勇于進取的精神。

  三、教學結(jié)構(gòu)設(shè)計:

  數(shù)學知識來源于生活實際,生活本身又是一個巨大的數(shù)學課堂,我在教學過程中注重把教材內(nèi)容與生活實踐結(jié)合起來,加強數(shù)學教學的實踐性,給數(shù)學找到生活的原型。我對本節(jié)課的數(shù)學知識結(jié)構(gòu)進行創(chuàng)造性地“教學加工”,在教學方法上采用了“合作——探索”的開放式教學模式,使課堂教學體現(xiàn)“參與式”、“生活化”、“探索性”,保證學生對數(shù)學知識的主動獲取,促進學生充分、和諧、自主、個性化的發(fā)展。

  整體思路為:教師創(chuàng)設(shè)情境,激發(fā)興趣,引出課題 引導學生分析實例,給出定義 例題分析(采用開放式教學) 知識小結(jié) 擴展例題 練習反饋

  整個教學設(shè)計的主要特色:

  (1)由生活事例引出課題;

 。2)采用開放式教學模式;

 。3)擴展例題是分析生活中的名言名句,又將數(shù)學融入生活中。

  努力做到:“教為不教,學為會學”;要“授之以魚”更要“授之以漁”。

  四、教學媒體設(shè)計:

  本節(jié)課是概念課,要避免單一的下定義作練習模式,應該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學,添加了一些與例題相匹配的圖片背景,以激發(fā)學生的學習興趣,另外將學生的自編題利用多媒體課件展示出來分析,提高了課堂教學的效率。

  五、教學過程設(shè)計:

  第一,創(chuàng)設(shè)情境,激發(fā)興趣,引出課題:

  考慮到高一學生學習這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。

  我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應該買多少?他說買3米足夠了!边@樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個事件目的是為了第二部分引導學生得出充分條件的定義。這里要強調(diào)該事件包括:A:有3米布料;B:做一件襯衫夠了。

  第二個事例是:“一人病重,呼吸困難,急診住院接氧氣!本彤a(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個事件的目的是為了第二部分引導學生得出必要條件的定義。這里要強調(diào)該事件包括:A:接氧氣;B:活了。

  用以上兩個生活中的事例來說明數(shù)學中應研究的概念、關(guān)系,會使學生感到親切自然,有助于提高興趣和深入領(lǐng)會概念的內(nèi)容,特別是它的必要性。

  第二,引導學生分析實例,給出定義。

  在第一部分激發(fā)起學生的學習興趣后,緊接著開展第二部分,引導學生分析實例,讓學生從事例中抽象出數(shù)學概念,得出本節(jié)課所要學習的充分條件和必要條件的定義。在引導過程中盡量放慢語速,結(jié)合事例幫助學生分析。

  得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯(lián)結(jié)詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。

  還應指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。

  當兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數(shù)學事例來強化。

高中數(shù)學說課稿 篇10

  尊敬的各位專家、評委:

  大家好!

  我是盧龍縣木井中學數(shù)學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數(shù)學必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標準對教材的要求,結(jié)合我對教材的理解,我將從以下幾個方面說明我的設(shè)計和構(gòu)思。

  一、教材分析

  “解三角形”既是高中數(shù)學的基本內(nèi)容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學習,讓學生從“實際問題”抽象成“數(shù)學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學的力量,進一步培養(yǎng)學生對數(shù)學的學習興趣和“用數(shù)學”的意識。

  二、學情分析

  我所任教的學校是我縣一所農(nóng)村普通中學,大多數(shù)學生基礎(chǔ)薄弱,對“一些重要的數(shù)學思想和數(shù)學方法”的應用意識和技能還不高。但是,大多數(shù)學生對數(shù)學的興趣較高,比較喜歡數(shù)學,尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學生能夠積極配合,有比較不錯的表現(xiàn)。

  三、教學目標

  1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

  過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發(fā)學生對現(xiàn)實世界的一些數(shù)學模型進行思考。

  情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數(shù)學規(guī)律的數(shù)學思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數(shù)學學習興趣和主動性,鍛煉探究精神。樹立“數(shù)學與我有關(guān),數(shù)學是有用的,我要用數(shù)學,我能用數(shù)學”的理念。

  2、教學重點、難點

  教學重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應用。

  教學難點:正弦定理證明及應用。

  四、教學方法與手段

  為了更好的達成上面的教學目標,促進學習方式的轉(zhuǎn)變,本節(jié)課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結(jié)合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。

  五、教學過程

  為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設(shè)計了這樣的教學過程:

  (一)創(chuàng)設(shè)情景,揭示課題

  問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

  1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

  問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

  [設(shè)計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學生學習本章知識的興趣。

  (二)特殊入手,發(fā)現(xiàn)規(guī)律

  問題3:在初中,我們已經(jīng)學習了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

  引導啟發(fā)學生發(fā)現(xiàn)特殊情形下的正弦定理

  (三)類比歸納,嚴格證明

  問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結(jié)論還成立嗎?

  [設(shè)計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結(jié)組研究,鼓勵學生用不同的方法證明這個結(jié)論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。

  問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導學生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學生用向量法完成證明。)

  [設(shè)計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數(shù)學的實踐中去感悟和提高數(shù)學的思維方法和思維習慣。同時,考慮到有部分同學基礎(chǔ)較差,考個人或小組可能無法完成探究任務(wù),教師在學生動手的同時,通過巡查,讓提前證明出結(jié)論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。

  問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內(nèi)容)

  教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學美的結(jié)論,不能不說也是人類數(shù)學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學家的老師了。當然,老師的希望能否變成現(xiàn)實,就要看大家的了。

  [設(shè)計說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學史的內(nèi)容,對學生不僅有數(shù)學美得熏陶,更能激發(fā)學生學習科學文化知識的熱情。

  (四)強化理解,簡單應用

  下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。

  [設(shè)計說明] 讓學生看看書,放慢節(jié)奏,有利于學生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數(shù)量,同時培養(yǎng)學生養(yǎng)成自覺看書的好習慣。

  我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

  問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據(jù)學生實踐中發(fā)現(xiàn)的問題給予必要的講評)

  [設(shè)計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創(chuàng)造條件。

  強化練習

  讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。

  問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [設(shè)計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進一步討論》

  (五)小結(jié)歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應用

  4、涉及的數(shù)學思想和方法。

  [設(shè)計說明] 師生共同總結(jié)本節(jié)課的收獲的同時,引導學生學會自己總結(jié),讓學生進一步回顧和體會知識的形成、發(fā)展、完善的過程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁習題1.1A組第1題。

  2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。

  證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

  [設(shè)計說明] 對不同水平的學生設(shè)計不同梯度的作業(yè),尊重學生的個性差異,有利于因材施教的教學原則的貫徹。

【關(guān)于高中數(shù)學說課稿范文集錦十篇】相關(guān)文章:

高中數(shù)學說課稿范文集錦十篇08-15

關(guān)于高中數(shù)學說課稿范文匯編十篇08-19

關(guān)于高中數(shù)學說課稿范文錦集十篇08-15

關(guān)于高中數(shù)學說課稿范文集錦6篇08-11

關(guān)于高中數(shù)學說課稿范文集錦5篇08-11

關(guān)于高中數(shù)學說課稿范文集錦7篇08-10

關(guān)于高中數(shù)學說課稿范文集錦8篇08-10

關(guān)于高中數(shù)學說課稿范文集錦9篇08-06

有關(guān)高中數(shù)學說課稿集錦十篇08-03