久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學說課稿

時間:2022-11-22 08:50:06 高中說課稿 我要投稿

【精】高中數(shù)學說課稿

  作為一位杰出的教職工,通常會被要求編寫說課稿,是說課取得成功的前提。怎么樣才能寫出優(yōu)秀的說課稿呢?以下是小編收集整理的高中數(shù)學說課稿,希望能夠幫助到大家。

【精】高中數(shù)學說課稿

高中數(shù)學說課稿1

  一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。

  二.目標分析:

  教學重點.難點

  重點:集合的含義與表示方法.

  難點:表示法的恰當選擇.

  教學目標

  l.知識與技能

  (1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

  (2)知道常用數(shù)集及其專用記號;

  (3)了解集合中元素的確定性.互異性.無序性;

  (4)會用集合語言表示有關數(shù)學對象;

  2.過程與方法

  (1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

  (2)讓學生歸納整理本節(jié)所學知識.

  3.情感.態(tài)度與價值觀

  使學生感受到學習集合的必要性,增強學習的積極性.

  三.教法分析

  1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.

  2.教學手段:在教學中使用投影儀來輔助教學.

  四.過程分析

  (一)創(chuàng)設情景,揭示課題

  1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。

  (2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?

  引導學生互相交流.與此同時,教師對學生的活動給予評價.

  2.活動:(1)列舉生活中的集合的例子;

  (2)分析、概括各實例的共同特征

  由此引出這節(jié)要學的內容。

  設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊

 。ǘ┭刑叫轮嫺拍

  1.教師利用多媒體設備向學生投影出下面7個實例:

  (1)1-20以內的所有質數(shù);

  (2)我國古代的四大發(fā)明;

  (3)所有的安理會常任理事國;

  (4)所有的正方形;

  (5)海南省在xxxx年9月之前建成的所有立交橋;

  (6)到一個角的兩邊距離相等的所有的點;

  (7)國興中學xxxx年9月入學的高一學生的全體.

  2.教師組織學生分組討論:這7個實例的共同特征是什么?

  3.每個小組選出--位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.

  一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

  4.教師指出:集合常用大寫字母A,B,c,D,...表示,元素常用小寫字母...表示.

  設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神

  (三)質疑答辯,發(fā)展思維

  1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

  2.教師組織引導學生思考以下問題:

  判斷以下元素的全體是否組成集合,并說明理由:

  (1)大于3小于11的偶數(shù);

  (2)我國的小河流.

  讓學生充分發(fā)表自己的建解.

  3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

  4.教師提出問題,讓學生思考

  (1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.[來源:Z,xx,k.com]

  如果是集合A的元素,就說屬于集合A,記作.

  如果不是集合A的元素,就說不屬于集合A,記作.

  (2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國.日本與集合A的關系分別是什么?請用數(shù)學符號分別表示.

  (3)讓學生完成教材第6頁練習第1題.

  5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內容,寫出常用數(shù)集的記號.并讓學生完成習題1.1A組第1題.

  6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

  (1)要表示一個集合共有幾種方式?

  (2)試比較自然語言.列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

  (3)如何根據(jù)問題選擇適當?shù)募媳硎痉?

  使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

  設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

  (四)鞏固深化,反饋矯正

  教師投影學習:

  (1)用自然語言描述集合{1,3,5,7,9};

  (2)用例舉法表示集合

  (3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.

  設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

  (五)歸納小結,布置作業(yè)[來源:Zxxk.com]

  小結:在師生互動中,讓學生了解或體會下例問題:

  1.本節(jié)課我們學習了哪些知識內容?

  2.你認為學習集合有什么意義?

  3.選擇集合的表示法時應注意些什么?

  設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):

  1.課后書面作業(yè):第13頁習題1.1A組第4題.

  2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材.

  五.板書分析

  PPT

  集合的含義與表示

  定義例1

  集合×××××××

  ××××××××××××××

  元素×××××××

  ×××××××例2

  元素與集合的關系×××××××

  ××××××××××××××

  作業(yè)××××××××××××××

高中數(shù)學說課稿2

  各位評委老師,大家好!

  我是本科數(shù)學**號選手,今天我要進行說課的課題是高中數(shù)學必修一第一章第三節(jié)第一課時《函數(shù)單調性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節(jié)課的設計方案。懇請在座的專家評委批評指正。

  一、教材分析

  1、 教材的地位和作用

 。1)本節(jié)課主要對函數(shù)單調性的學習;

 。2)它是在學習函數(shù)概念的基礎上進行學習的,同時又為基本初等函數(shù)的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

 。3)它是歷年高考的熱點、難點問題

  (根據(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)

  2、 教材重、難點

  重點:函數(shù)單調性的定義

  難點:函數(shù)單調性的證明

  重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)

  3.學情分析

  高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環(huán)節(jié)總是創(chuàng)設恰當?shù)膯栴}情境,引導學生積極思考,培養(yǎng)他們的邏輯思維能力。從學生的認知結構來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學的優(yōu)勢;由于學生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學中注意加強.

  二、教學目標

  知識目標:

 。1)函數(shù)單調性的定義

  (2)函數(shù)單調性的證明

  能力目標:

  培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

  情感目標:

  培養(yǎng)學生勇于探索的精神和善于合作的意識

  (這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)

  三、教法學法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價法

  2、學法分析

  “授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結法。

  (前三部分用時控制在三分鐘以內,可適當刪減)

  四、教學過程

  1、以舊引新,導入新知

  通過課前小研究讓學生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發(fā)現(xiàn),教師總結:一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

  2、創(chuàng)設問題,探索新知

  緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結,并板書,揭示函數(shù)單調性的定義,并注意強調可以利用作差法來判斷這個函數(shù)的單調性。

  讓學生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的數(shù)學用語。

  讓學生自主學習函數(shù)單調區(qū)間的定義,為接下來例題學習打好基礎。

  3、 例題講解,學以致用

  例1主要是對函數(shù)單調區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數(shù)單調區(qū)間的掌握。強調單調區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

  例2是將函數(shù)單調性運用到其他領域,通過函數(shù)單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

  4、歸納小結

  本節(jié)課我們主要學習了函數(shù)單調性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。

  5、作業(yè)布置

  為了讓學生學習不同的數(shù)學,我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

  6、板書設計

  我力求簡潔明了地概括本節(jié)課的學習要點,讓學生一目了然。

 。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

  五、教學評價

  本節(jié)課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協(xié)調作用,促進其數(shù)學素養(yǎng)不斷提高。

高中數(shù)學說課稿3

  一、教材分析:

  1.教材所處的地位和作用:

  本節(jié)內容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數(shù)學教材數(shù)學2第一章空間幾何體3節(jié)內容。在此之前學生已學習了空間幾何體的結構、三視圖和直觀圖為基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內容是在空間幾何中,占據(jù)重要的地位。以及為其他學科和今后的學習打下基礎。

  2.教育教學目標:

  根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

  知識與能力:

 。1)了解柱體、錐體、臺體的表面積.

  (2)能用公式求柱體、錐體、臺體的表面積。

  (3)培養(yǎng)學生空間想象能力和思維能力

  過程與方法:

  讓學生經(jīng)歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學生對數(shù)學問題的轉化化歸能力。

  情感、態(tài)度與價值觀:

  通過學習,是學生感受到幾何體表面積的求解過程,激發(fā)學生探索、創(chuàng)新意識,增強學習積極性。

  3.重點,難點以及確定依據(jù):

  本著新課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點

  教學重點:柱,錐,臺的表面積公式的推導

  教學難點:柱,錐,臺展開圖與空間幾何體的轉化

  二、教法分析

  1.教學手段:

  如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點:應著重采用合作探究、小組討論的教學方法。

  2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的探究式討論教學法。在學生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

  三.學情分析

  我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

  (1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散

 。2)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力

  最后我來具體談談這一堂課的教學過程:

  四、教學過程分析

 。1)由一段動畫視頻引入:豐富生動的吸引學生的注意力,調動學生學習積極性

 。2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。

  (3)探究問題。完全將主動權教給學生,讓學生主動去探究,得到解決問題的思路,鍛煉學生動手能力,解決實際問題能力。

 。4)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。

 。5)例題及練習,見學案。

 。6)布置作業(yè)。

  針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

 。7)小結。讓學生總結本節(jié)課的收獲。老師適時總結歸納。

高中數(shù)學說課稿4

  課題《數(shù)列的概念與簡單表示方法(一)》選自普通高中課程標準試驗教科書人教版A版數(shù)學必修5第二章第一節(jié)的第一課時。我將從教材分析、學情分析、教學目標分析、教法分析、教學過程這五個方面來匯報我對這節(jié)課的教學設想。

  一、教材分析

  1、教材的地位和作用

  數(shù)列是高中數(shù)學的重要內容之一,它的地位作用可以從三個方面來看:

 。1)數(shù)列有著廣泛的實際應用。如堆放的物品的總數(shù)計算要用到數(shù)列的前n項和,又如分期儲蓄、付款公式的有關計算也要用到數(shù)列的一些知識。

 。2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學的許多內容在解決數(shù)列的某些問題中得到了充分運用,數(shù)列是前面函數(shù)知識的延伸及應用,可以使學生加深對函數(shù)概念的理解;另一方面,學習數(shù)列又為進一步學習數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項和以及通項公式打好了鋪墊。因此就有必要講好、學好數(shù)列。

 。3)數(shù)列是培養(yǎng)學生數(shù)學能力的良好題材。是進行計算,推理等基本訓練,綜合訓練的重要教材。學習數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運用前面的知識解決數(shù)列中的一些問題,這些都有助于學生數(shù)學能力的提高。

  二、學情分析

  從學生知識層面看:學生對數(shù)列已有初步的認識,對方程、函數(shù)、數(shù)學公式的運用已有一定的基礎,對方程、函數(shù)思想的體會也逐漸深刻。

  從學生素質層面看:從高一新生入學開始,我就很注意學生自主探究習慣的養(yǎng)成,F(xiàn)階段我的學生思維活躍,課堂參與意識較強,而且已經(jīng)具有一定的分析、推理能力。

  三、教學目標分析

  根據(jù)上面的教材分析以及學情分析,確定了本節(jié)課的教學目標:

 。1)知識目標:認識數(shù)列的特點,掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點。了解數(shù)列通項公式的意義及數(shù)列分類。能由數(shù)列的通項公式求出數(shù)列的各項,反之,又能由數(shù)列的前幾項寫出數(shù)列的一個通項公式。

 。2)能力目標:通過對數(shù)列概念以及通項公式的探究、推導、應用等過程,鍛煉了學生的觀察、歸納、類比等分析問題的能力。同時更深層次的理解了數(shù)學知識之間的相互滲透性思想。

 。3)情感目標:在教學中使學生體會教學知識與現(xiàn)實世界的聯(lián)系,并且利用各種有趣的,貼近學生生活的素材激發(fā)學生的學習興趣,培養(yǎng)熱愛生活的情感。

  四、教學重點與難點

  根據(jù)教學目標以及學生的理解能力與認知水平,我確定了如下的教學重難點。

  重點:理解數(shù)列的概念,能由函數(shù)的觀點去認識數(shù)列,以及對通項公式的理解。

  難點:根據(jù)數(shù)列的前幾項的特點,通過多角度、多層次的觀察分析歸納出數(shù)列的一個通項公式。

  五、教法分析

  根據(jù)本節(jié)課的內容和學生的實際情況,結合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導發(fā)現(xiàn)為輔,由老師帶領同學們發(fā)現(xiàn)問題,分析問題,并解決問題.考慮到學生的認知過程,本節(jié)課會采用由易到難的教學進程以及實例給出與練習設置,讓學生們充分體會到事物的發(fā)展規(guī)律。同時為了增大課堂容量,提高教學效率,更吸引同學們的眼光,提高學習熱情,本節(jié)課還會采用常規(guī)手段與現(xiàn)代手段相結合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).

高中數(shù)學說課稿5

  尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數(shù)學必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時3.2.1直線的點斜式方程的內容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。

  一、教學背景的分析

  1.教材分析

  直線的方程是學生在初中學習了一次函數(shù)的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續(xù)研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內容之一。“直線的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產(chǎn)實踐中有著廣泛的應用。同時在這一節(jié)中利用坐標法來研究曲線的數(shù)形結合、幾何直觀等數(shù)學思想將貫穿于我們整個高中數(shù)學教學。

  2.學情分析

  我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現(xiàn)“數(shù)”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。

  根據(jù)上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

  3.教學目標

  (1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;

  (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ;

  (3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規(guī)律;

  (4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關系等活動,培養(yǎng)學生主動探究知識、合作交流的意識,并初步了解數(shù)形結合在解析幾何中的應用。

  4. 教學重點與難點

  (1)重點: 直線點斜式、斜截式方程的特點及其初步應用。

  (2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。

  二、教法學法分析

  1.教法分析:根據(jù)學情,為了能調動學生學習的積極性,本節(jié)課采用“實例引導的啟發(fā)式”問題教學法。幫助學生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當?shù)睦枚嗝襟w課件進行輔助教學,激發(fā)學生的學習興趣。

  2.學法分析:學生從問題中嘗試、總結、質疑、運用,體會學習數(shù)學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數(shù)”的轉化思想。

  下面我就對具體的教學過程和設計加以說明:

  三、教學過程的設計及實施

  整個教學過程是由六個問題組成,共分為四個環(huán)節(jié),學習或涉及四個概念:

  溫故知新,澄清概念----直線的方程

  深入探究,獲得新知--------點斜式

  拓展知識,再獲新知--------斜截式

  小結引申,思維延續(xù)--------兩點式

  平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學習的內容。

  (一)溫故知新,澄清概念----直線的方程

  問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?

  [學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。

  [教師活動] 對于不同學生的表述進行分析、歸納,用規(guī)范的語言對方程和直線的方程進行描述。

  [設計意圖]從學生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學生已有的數(shù)學知識去學數(shù)學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。

  問題二:若直線經(jīng)過點A(-1, 3),斜率為-2,點P在直線l上。

  (1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ;

  (2)畫出直線l,你能求出直線l的方程嗎?

  (3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?

  [學生活動]學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。

  [教師活動]巡視?隙▽W生的各種方法及大膽嘗試的行為;并引導學生觀察發(fā)現(xiàn),得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。

  [設計意圖]復習斜率公式;待定系數(shù)法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數(shù)學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

  (二)深入探究,獲得新知----點斜式

  問題三: ① 若直線l經(jīng)過點P0(x0,y0),且斜率為k,求直線l的方程。

 、谥本的點斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線?

  [學生活動] ①學生敘述,老師板書,強調斜率公式與點斜式的區(qū)別。 ②指導學生用筆轉一轉不難發(fā)現(xiàn),當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。

  [設計意圖] 由特殊到一般的學習思路,突破難點,培養(yǎng)學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養(yǎng)思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。

  問題四:分別求經(jīng)過點且滿足下列條件的直線的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習]P95.1、2。

  [學生活動]學生獨立完成并展示或敘述,老師點評。

  [設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時反饋,便于反思本環(huán)節(jié)的教學,指導下個環(huán)節(jié)的安排;突破重點內容后,進入第三環(huán)節(jié)。

  (三)拓展知識,再獲新知----斜截式

  問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。

  (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。

  [學生活動]學生獨立完成后口述,教師板書。

  [設計意圖] 由一般到特殊再到一般,培養(yǎng)學生的推理能力,同時引出截距的概念及斜截式方程,強調截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數(shù)的關系。通過下面的基礎練習,突破重點。

  [練習]P95.3。

  [設計意圖]充分用好教材習題,及時反饋本環(huán)節(jié)的教學情況,指導下個環(huán)節(jié)的安排。

  (四)小結引申,思維延續(xù)----兩點式

  課堂小結 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)

  2、哪些地方還沒有學好?

  問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。

  (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。

  [學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現(xiàn)的錯誤,規(guī)范書寫的格式;沒時間就布置分層作業(yè)。

  [設計意圖](1)小題與上一節(jié)的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數(shù)法,讓好一點的學生有一些發(fā)散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節(jié)課研究直線的兩點式方程作了重要的準備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設計意圖]通過分層作業(yè),做到因材施教,使不同的學生在數(shù)學上得到不同的發(fā)展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展。

  四、教學特點分析

  (一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發(fā)展。

  (二)啟發(fā)式教學。教學中總是以提問的方式敘述所學內容,如:1.直角坐標系內的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數(shù)有什么關系?等等。啟發(fā)學生的思維,作好與學生的對話與交流活動。

  (三)注重自主探究。設計問題鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發(fā)展區(qū)上,布設了由淺入深的學習環(huán)境突破重點、難點,引導學生逐步發(fā)現(xiàn)知識的形成過程。設計了兩次思維發(fā)散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創(chuàng)造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。

高中數(shù)學說課稿6

  高中數(shù)學第三冊(選修)Ⅱ第一章第2節(jié)第一課時

  一、教材分析

  教材的地位和作用

  期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊。同時,它在市場預測,經(jīng)濟統(tǒng)計,風險與決策等領域有著廣泛的應用,為今后學習數(shù)學及相關學科產(chǎn)生深遠的影響。

  教學重點與難點

  重點:離散型隨機變量期望的概念及其實際含義。

  難點:離散型隨機變量期望的實際應用。

  [理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節(jié)課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學難點。

  二、教學目標

  [知識與技能目標]

  通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

  會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

  [過程與方法目標]

  經(jīng)歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養(yǎng)學生歸納、概括等合情推理能力。

  通過實際應用,培養(yǎng)學生把實際問題抽象成數(shù)學問題的能力和學以致用的數(shù)學應用意識。

  [情感與態(tài)度目標]

  通過創(chuàng)設情境激發(fā)學生學習數(shù)學的情感,培養(yǎng)其嚴謹治學的態(tài)度。在學生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。

  三、教法選擇

  引導發(fā)現(xiàn)法

  四、學法指導

  “授之以魚,不如授之以漁”,注重發(fā)揮學生的主體性,讓學生在學習中學會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

  五、教學的基本流程設計

  高中數(shù)學第三冊《離散型隨機變量的期望》說課教案.rar

高中數(shù)學說課稿7

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續(xù)深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。

  在教材的處理上,采取小單元教學,本節(jié)課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。

  2、重點與難點。

  重點:對概率意義的理解,經(jīng)過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。

  難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結果數(shù)的分析。

  二、目的分析:

  知識與技能:掌握用頻率預測概率和用列舉法求概率方法。

  過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統(tǒng)計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數(shù)學的視角觀察客觀世界,用數(shù)學的思維思考客觀世界,以數(shù)學的語言描述客觀世界。

  情感態(tài)度價值觀:學生經(jīng)歷觀察、分析、歸納、確認等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,感受量變與質變的對立統(tǒng)一規(guī)律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學生學習數(shù)學的熱情,增強對數(shù)學價值觀的認識。

  三、教法、學法分析:

  引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學生在數(shù)學活動中學習數(shù)學、掌握數(shù)學,并能應用數(shù)學解決現(xiàn)實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現(xiàn)"教"為"學"服務這一宗旨。

  四、教學過程分析:

  1、引導學生探究

  精心設計問題一,學生經(jīng)過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節(jié)資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發(fā)生大。R龑W生對問題二的探究與觀察實驗數(shù)據(jù),使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學規(guī)律的真實的發(fā)現(xiàn)過程。

  2、歸納概括

  學生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學生明確概率定義的由來。

  引導學生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養(yǎng)學生的分析問題本事,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。

  3、舉例應用

 、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。

 、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。

  4、深化發(fā)展

 、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。

 、谱寣W生設計活動資料,對知識進行升華和拓展,引導學生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新本事。

高中數(shù)學說課稿8

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

  二、學情分析:

  學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節(jié)資料的基礎。學生對數(shù)的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過類比數(shù)的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

  三、教學目的:

  1、經(jīng)過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

  2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、經(jīng)過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數(shù)學方面的本事。

  四、教學重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。

  五、教學方法

  本節(jié)采用以下教學方法:

  1、類比:由數(shù)的加法運算類比向量的加法運算。

  2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現(xiàn)探究式教學法的運用。

  3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。

  4、多媒體技術的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數(shù)學思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。

  3、歸納思想:主要體此刻以下三個環(huán)節(jié):

 、賹W完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。

 、谟晒簿向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。

  ③對向量加法的結合律和探討中,又使學生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學過程:

  1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

  2、引入新課:

  (1)平行四邊形法則的引入。

  學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一齊才能用平行四邊形法則,不在一齊不能用。這時要經(jīng)過講解例1,使學生認識到能夠經(jīng)過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設計意圖:本著從學生最熟悉、離學生最近的知識經(jīng)驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一齊時,須把起點移到一齊,至此才能使學生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。

  這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。

  設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯(lián)系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。

 。3)共線向量的加法

  方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一齊,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做?墒菍W生學過有理數(shù)加法中的異號兩數(shù)相加:"異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。"類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導學生嘗試運用三角形法則去做,發(fā)現(xiàn)結論正確。

  反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則經(jīng)過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設計意圖:經(jīng)過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。

  (4)向量加法的運算律

  ①交換律:交換律是利用平行四邊形法則的圖形,又結合三角

  形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。

 、诮Y合律:結合律是經(jīng)過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。

  接下來是對應的兩個練習,運用交換律與結合律計算向量的和。

  設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現(xiàn),多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

  3、小結

  先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結資料,使學生印象更深。

  (1)平行四邊形法則:起點相同,適用于不共線向量的求和。

 。2)三角形法則首尾相接,適用于任意多個向量的求和。

  (3)運算律

高中數(shù)學說課稿9

各位教師:

  今天我說課的題目是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課《向量的加法》,我從以下幾個方面闡述本課的教學設計。

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學情分析:

  學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節(jié)內容的基礎。學生對數(shù)的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

  三、教學目的:

  1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

  2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、通過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數(shù)學方面的能力。

  四、教學重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。

  五、教學方法

  本節(jié)采用以下教學方法:1、類比:由數(shù)的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現(xiàn)探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數(shù)學思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學過程:

  1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設計意圖:本著從學生最熟悉、離學生最近的知識經(jīng)驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

  這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

  設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯(lián)系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。

 。3)共線向量的加法

  方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑W生分析作法,結果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發(fā)現(xiàn)結論正確。

  反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則。對有如下規(guī)定:

  +

  =

  +

  =

  通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

  (4)向量加法的運算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。

  ②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。

  接下來是對應的兩個練習,運用交換律與結合律計算向量的和。

  設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

  3、小結

  先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結內容,使學生印象更深。

 。1)平行四邊形法則:起點相同,適用于不共線向量的求和。

 。2)三角形法則首尾相接,適用于任意多個向量的求和。

 。3)運算律

  交換律:

  +

  =

  +

  結合律:(

  +

  )+

  =

  +(

  +

 。

  4、作業(yè):P91,A組1、2、3。

  《向量的加法》評課稿

  本節(jié)所授內容基本與原先設想一致,評略得當,重點突出,難點化解。在兩個加法則的引入、講解及運用的處理方法、時間安排都把握得比較好,能夠引導學生積極主動地探索平行四邊形法則和三角形法則,使學生對兩個加法法則形成了正確的認識,留下了深刻的印象,通過反饋練習,可以看出學生對兩個法則的運用掌握的比較好,比較完整地實現(xiàn)了教學目標。

  本節(jié)課的教學方法運用比較合理:采取了類比、探究、講練結合及多媒體技術等多種方法。對數(shù)學課來說,本節(jié)課最顯著的特點是將全部板書都移到了課件上,對我來說,是一次嘗試,因為以前,我認為數(shù)學課沒必要用課件,對全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學生的反饋情況來看,這樣處理對教學效果沒有什么不良影響,反而使學生能更直觀地理解兩個加法法則和運算律,通過課件中的向量的平移,加深了學生對上節(jié)課所學的“相等向量”的概念的理解,也加大了課堂容量,還沒有擁擠之感。從學生對內容小結的敘述看,沒有板書,并沒有妨礙本節(jié)內容在學生腦海中留下的印象。原先的設計中,板書設計也有,打在教案的后面。

  通過這節(jié)課的講授,我收獲很多:首先,從課程的構思上,沒有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學生學過的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯?梢姡瑢滩牡奶幚泶_實要根據(jù)學生情況,靈活裁剪,不能生搬硬套。

  其次,通過這節(jié)課我感到,對有些與圖形聯(lián)系較多的課程,使用課件講解簡便易行,關鍵是要根據(jù)教學設計制作合適的課件,并且合理使用。

  本節(jié)缺憾也很多。首先,學生活動還是偏少,沒有充分、全面地調動學生熱情。其次,語言不夠精煉,有時比較啰嗦,也耽誤了時間,第三,學生發(fā)言時,好打斷學生,總覺得學生說得不清楚,搶學生話頭,打擊了學生課堂參與的積極性,很不好。

  以上是我對這節(jié)課的反思,不到之處,請大家指點。

高中數(shù)學說課稿10

  【一】教學背景分析

  1、教材結構分析

  《圓的方程》安排在高中數(shù)學第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節(jié)內容在整個解析幾何中起著承前啟后的作用。

  2、學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現(xiàn)困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

  根據(jù)上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

  3、教學目標

  (1)知識目標:

 、僬莆請A的標準方程;

 、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;

 、劾脠A的標準方程解決簡單的實際問題。

  (2)能力目標:

 、龠M一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(shù)形結合思想的理解和加強對待定系數(shù)法的運用;

  ③增強學生用數(shù)學的意識。

  (3)情感目標:

  ①培養(yǎng)學生主動探究知識、合作交流的意識;

 、谠隗w驗數(shù)學美的過程中激發(fā)學生的學習興趣。

  根據(jù)以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4、教學重點與難點

  (1)重點:圓的標準方程的求法及其應用。

  (2)難點:

 、贂鶕(jù)不同的已知條件求圓的標準方程;

  ②選擇恰當?shù)淖鴺讼到鉀Q與圓有關的實際問題。

  為使學生能達到本節(jié)設定的教學目標,我再從教法和學法上進行分析:

  【二】教法學法分析

  1、教法分析為了充分調動學生學習的積極性,本節(jié)課采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發(fā)展區(qū)上。另外我恰當?shù)睦枚嗝襟w課件進行輔助教學,借助信息技術創(chuàng)設實際問題的情境既能激發(fā)學生的學習興趣,又直觀的引導了學生建模的過程。

  2、學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數(shù)法求的過程。

  下面我就對具體的教學過程和設計加以說明:

  【三】教學過程與設計

  整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環(huán)節(jié):

  創(chuàng)設情境啟迪思維深入探究獲得新知應用舉例鞏固提高反饋訓練形成方法小結反思拓展引申下面我從縱橫兩方面敘述我的教學程序與設計意圖。

  首先:縱向敘述教學過程

  (一)創(chuàng)設情境——啟迪思維

  問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?

  通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設問題情境,讓學生感受到問題來源于實際,應用于實際,激發(fā)了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

  (二)深入探究——獲得新知

  問題二

  1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2、如果圓心在,半徑為時又如何呢?

  這一環(huán)節(jié)我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環(huán)節(jié)。

  (三)應用舉例——鞏固提高

  I。直接應用內化新知

  問題三

  1、寫出下列各圓的標準方程:

  (1)圓心在原點,半徑為3;

  (2)經(jīng)過點,圓心在點。

  2、寫出圓的圓心坐標和半徑。

  我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。

  II。靈活應用提升能力

  問題四

  1、求以點為圓心,并且和直線相切的圓的方程。

  2、求過點,圓心在直線上且與軸相切的圓的方程。

  3、已知圓的方程為,求過圓上一點的切線方程。

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

  我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發(fā)散思維創(chuàng)設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。

  III。實際應用回歸自然

  問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養(yǎng)了學生建模的習慣和用數(shù)學的意識。

  (四)反饋訓練——形成方法

  問題六

  1、求過原點和點,且圓心在直線上的圓的標準方程。

  2、求圓過點的切線方程。

  3、求圓過點的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓練。這一環(huán)節(jié)中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數(shù)學的樂趣,成功的喜悅,找到自信,增強學習數(shù)學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數(shù)形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養(yǎng)學生思維的嚴謹性具有良好的效果。

  (五)小結反思——拓展引申

  1。課堂小結

  把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數(shù)形結合的思想和待定系數(shù)的方法

 、賵A心為,半徑為r的圓的標準方程為:

  圓心在原點時,半徑為r的圓的標準方程為:。

 、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:。

  2、分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4。(B)思維拓展型作業(yè):試推導過圓上一點的切線方程。

  3、激發(fā)新疑

  問題七1。把圓的標準方程展開后是什么形式?

  2、方程表示什么圖形?

  在本課的結尾設計這兩個問題,作為對這節(jié)課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:

  橫向闡述教學設計

  (一)突出重點抓住關鍵突破難點

  求圓的標準方程既是本節(jié)課的教學重點也是難點,為此我布設了由淺入深的學習環(huán)境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。

  第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據(jù)問題情境構建數(shù)學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數(shù)學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。

  (二)學生主體教師主導探究主線

  本節(jié)課的設計用問題做鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發(fā)現(xiàn)的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節(jié)的學習任務。

  (三)培養(yǎng)思維提升能力激勵創(chuàng)新

  為了培養(yǎng)學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節(jié)課的教學預設,具體的教學過程還要根據(jù)學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術的事業(yè)”。

高中數(shù)學說課稿11

  各位老師:

  大家好!我叫周婷婷,來自湖南科技大學。我說課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節(jié)課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  現(xiàn)代社會是一個信息技術發(fā)展很快的社會,算法進入高中數(shù)學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現(xiàn)代技術解決問題。又由于算法的具體實現(xiàn)上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養(yǎng)學生的理性精神和實踐能力。

  2.教學的重點和難點

  重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。

  二、教學目標分析

  1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。

  2.能力目標:讓學生感悟人們認識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學生的.觀察能力,表達能力和邏輯思維能力。

  3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。

  三、教學方法分析

  采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學生的探究論證、邏輯思維能力。

  四、學情分析

  算法這部分的使用性很強,與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節(jié)課的內容。

  五、教學過程分析

  1.創(chuàng)設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學家朱世杰的數(shù)學作品《四元玉鑒》,告訴學生們章頭圖正是體現(xiàn)了中國古代數(shù)學與現(xiàn)代計算機科學的聯(lián)系,它們的基礎都是"算法".

  「設計意圖」是為了充分挖掘章頭圖的教學價值,體現(xiàn)

  1)算法概念的由來;

  2)我們將要學習的算法與計算機有關;

  3)展示中國古代數(shù)學的成就;

  4)激發(fā)學生學習算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)

  2.引入新課:在這一環(huán)節(jié)我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數(shù)據(jù),體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。

  之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據(jù)剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)

  3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數(shù)學思想的領悟。

  這兩道例題均選自課本的例1和例2.

  例1是讓我們設定一個程序以判斷一個數(shù)是否為質數(shù)。質數(shù)是我們之前已經(jīng)學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數(shù)應滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復".為導出一般問題的算法創(chuàng)造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:

 。1)寫出的算法必須能解決一類問題,并且能夠重復使用。

 。2)要使算法盡量簡單、步驟盡量少。

 。3)要保證算法正確,且計算機能夠執(zhí)行。

  在例1的基礎上我們繼續(xù)研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

  4.課堂小結:

 。1)算法的概念和算法的基本特征

 。2)算法的描述方法,算法可以用自然語言描述。

 。3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節(jié)課的重點,對所學知識有一個系統(tǒng)整體的認識。(約6分鐘)

  5.布置作業(yè):課本練習1、2題

  課后作業(yè)的布置是為了檢驗學生對本節(jié)課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業(yè)實施分層設置,分必做和選做,利于拓展學生的自主發(fā)展的空間。

高中數(shù)學說課稿12

  尊敬的各位專家,評委:

  上午好!

  根據(jù)新課改的理論標準,我將從教材分析,學情分析,教學目標分析,學法、教法分析,教學過程分析,以及板書設計這六個方面來談談我對教材的理解和教學的設計。

  一、教材分析

  地位和作用:

  《______________________》是北師大版高中數(shù)學必修二的第______章“__________”的第________節(jié)內容。

  本節(jié)是在學習了________________________________________之后編排的。通過本節(jié)課的學習,既可以對_________________________________的知識進一步鞏固和深化,又可以為后面學習_________________________打下基礎,所以_________________是本章的重要內容。此外,《________________________》的知識與我們日常生活、生產(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。

  二、學情分析

  1、學生已熟悉掌握______

  2、學生的認知規(guī)律,是由整體到局部,具體到抽象發(fā)展的。

  3、學生思維活躍,積極性高,已初步形成對數(shù)學問題的合作探究能力

  4、學生層次參差不齊,個體差異還比較明顯

  三、教學目標分析

  根據(jù)《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

  1、知識與技能:

  2、過程與方法:通過___學習,體會__的思想,培養(yǎng)學生提出問題,分析問題,解決問題的能力,提高交流表達能力,提高獨立獲取知識的能力。

  3、情感態(tài)度與價值觀:培養(yǎng)把握空間圖形的能力,欣賞空間圖形所反應的數(shù)學美(認識數(shù)學內容之間的內在聯(lián)系,加強數(shù)形結合的思想,形成正確的數(shù)學觀)。

  教學重點:

  難點:

  四、學法、教法分析

 。ㄒ唬⿲W法

  首先,通過自學探究,培養(yǎng)學生的分析、歸納能力,提高學生合作學習的能力,學生課堂中體現(xiàn)自我,學會尋找問題的突破口,在探究中學會思考,在合作中學會推進,在觀察中學會比較,進而推進整個教學程序的展開。

  其次,教學過程中,我想適時地根據(jù)學生的“最近發(fā)展區(qū)”搭建平臺,充分發(fā)揮“教師的主導作用和學生的主體地位相統(tǒng)一的教學規(guī)律”,

  從學生原有的知識和能力出發(fā),指導學生學會觀察、分析、歸納問題的能力。

  學生只有不斷地解決問題、產(chǎn)生成就感的過程中,才能真正地提高學習的興趣,也只有這樣才能“學”有新“思”,“思”有新“得”。

 。ǘ┙谭

  數(shù)學教育家波利亞曾經(jīng)說過:“學習任何知識的最佳途徑即是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的發(fā)展規(guī)律、性質和聯(lián)系!备鶕(jù)學生的認知特點和知識水平,為落實重點、突破難點,本著以人為本,以學為中心的思想,本節(jié)課我將采用啟發(fā)式、合作探究的方式來進行教學。運用多媒體演示輔助教學的一種手段,以激發(fā)學生的求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)問題、分析問題和解決問題。

  五、教學過程分析

  1、創(chuàng)設情境,引入問題。

  新課標指出:“應該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生最大的思考空間,充分體現(xiàn)學生主體地位。

  2、發(fā)現(xiàn)問題,探究新知。

  數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷

  “數(shù)學化”、“再創(chuàng)造”的活動過程.

  3、深入探究,加深理解。

  有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

  4、當堂訓練,鞏固提高。

  通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對知識識的再次深化。

  5、小結歸納,拓展深化。

  小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結。

  6、作業(yè)設計

  作業(yè)分為必做題和選做題。

  針對學生能力和水平的差異,進行分層訓練,在所有學生獲得共同知識基礎和基本能力的同時,讓學有余力的學生將學習從課堂延伸到課外,獲得更大的能力提升,這體現(xiàn)新課改理念,也是因材施教的教學原則的具體運用。

  現(xiàn)代數(shù)學教學觀和新課改要求教學能從“讓學生學會”向“讓學生會學”轉變,使數(shù)學教學真正成為數(shù)學活動的教學。所以,本節(jié)課我們不僅僅是單純的傳授知識,而更應該重視對數(shù)學方法的滲透。從熟悉的知識出發(fā),學生自主探索、合作交流激發(fā)學生的學習興趣,突破難點,培養(yǎng)學生發(fā)現(xiàn)問題、解決問題的能力

  六、板書設計

  板書要基本體現(xiàn)整堂課的內容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;突出本節(jié)重難點,能指導教師的教學進程、引導學生探索知識,啟迪學生思維。

  我的說課到此結束,敬請各位專家、評委批評指正。

  謝謝!

高中數(shù)學說課稿13

  一、說教材

 。1)說教材的內容和地位

  本次說課的內容是人教版高一數(shù)學必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握以及使用數(shù)學語言的基礎。從知識結構上來說是為了引入函數(shù)的定義。因此在高中數(shù)學的模塊中,集合就顯得格外的舉足輕重了。

 。2)說教學目標

  根據(jù)教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據(jù)新課標制定如下教學目標:

  1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關系的意義,掌握集合元素的特征。

  2.過程與方法:通過情景設置提出問題,揭示課題,培養(yǎng)學生主動探究新知的習慣。并通過"自主、合作與探究"實現(xiàn)"一切以學生為中心"的理念。

  3.情感態(tài)度與價值觀:感受數(shù)學的人文價值,提高學生的學習數(shù)學的興趣,由集合的學習感受數(shù)學的簡潔美與和諧統(tǒng)一美。同時通過自主探究領略獲取新知識的喜悅。

 。3)說教學重點和難點

  依據(jù)課程標準和學生實際,我確定本課的教學重點為

  教學重點:集合的基本概念及元素特征。

  教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關系。

  二、說教法和學法

  接下來則是說教法、學法

  教法與學法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數(shù)學實例"相結合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創(chuàng)造條件讓學生參與探究活動,()不僅提高了學生探究能力,更讓學生獲得學習的技能和激發(fā)學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結等。

  總之,不管采取什么教法和學法,每節(jié)課都應不斷研究學生的學習心理機制,不斷優(yōu)化教師本身的教學行為,自始至終以學生為主體,為學生創(chuàng)造和諧的課堂氛圍。

  三、說教學過程

  接著我來說一下最重要的部分,本節(jié)課的教學過程:

  這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進。 多層次、多角度地加深對概念的理解。 提高學生學習的興趣,以達到良好的教學效果。

  第一環(huán)節(jié):創(chuàng)設問題情境,引入目標

  課堂開始我將提出兩個問題:

  問題1:班級有20名男生,16名女生,問班級一共多少人?

  問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

  這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。

  待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。

  安排這一過程的意圖是為了從實際問題引入,讓學生了解數(shù)學來源于實際。從而激發(fā)學生參與課堂學習的欲望。

  很自然地進入到第二環(huán)節(jié):自主探究

  讓學生閱讀教材,并思考下列問題:

 。1)有那些概念?

  (2)有那些符號?

  (3)集合中元素的特性是什么?

  安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養(yǎng)學生的探究能力。

  讓學生自主探究之后將進入第三環(huán)節(jié):討論辨析

  小組合作探究(1)

  讓學生觀察下列實例

 。1)1~20以內的所有質數(shù);

 。2)所有的正方形;

 。3)到直線 的距離等于定長 的所有的點;

 。4)方程 的所有實數(shù)根;

  通過以上實例,辨析概念:

 。1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

 。2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

  問題4:某單位所有的"帥哥"能否構成一個集合?由此說明什么?

  集合中的元素必須是確定的

  問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

  集合中的元素是不重復出現(xiàn)的

  問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

  我如此設計的意圖是因為:問題是數(shù)學的心臟,感受問題是學習數(shù)學的根本動力。

  小組合作探究(3)——元素與集合的關系

  問題7:設集合A表示"1~20以內的所有質數(shù)",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

  問題8:如果元素a是集合A中的元素,我們如何用數(shù)學化的語言表達?

  a屬于集合A,記作a∈A

  問題9:如果元素a不是集合A中的元素,我們如何用數(shù)學化的語言表達?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數(shù)集及其表示方法

  問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?

  自然數(shù)集(非負整數(shù)集):記作 N

  正整數(shù)集:

  整數(shù)集:記作 Z

  有理數(shù)集:記作 Q 實數(shù)集:記作 R

  設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結構。

  第四環(huán)節(jié):理論遷移 變式訓練

  1.下列指定的對象,能構成一個集合的是

 、 很小的數(shù)

 、 不超過30的非負實數(shù)

 、 直角坐標平面內橫坐標與縱坐標相等的點

  ④ π的近似值

 、 所有無理數(shù)

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節(jié):課堂小結,自我評價

  1.這節(jié)課學習的主要內容是什么?

  2.這節(jié)課主要解釋了什么數(shù)學思想?

  設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統(tǒng)。教師用激勵性的語言加一點評,讓學生的思想敞亮的發(fā)揮出來。

  第六環(huán)節(jié):作業(yè)布置,反饋矯正

  1.必做題 課本習題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a 的值。

  設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。

  四、板書設計

  好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W生板演)

  3.常見集合的表示

  4.范例研究

高中數(shù)學說課稿14

  各位老師大家好!

  我說課的內容是人教 版 A版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。

  (一) 教材分析

  本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以解析法的方式來研究直線相關性質,而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節(jié)課也初步向學生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。

  (二) 學情分析

  本節(jié)課的 教學 對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上 知道兩點確定一條直線, 知道點與坐標的關系,實現(xiàn)了最簡單的形與數(shù)的轉化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結合的能力和分類討論的思想。但根據(jù)學生的認知規(guī)律,還沒有形成自覺地把數(shù)學問題抽象化的能力。所以在教學設計時需 從 學生的最近發(fā)展區(qū)進行探究學習,盡量讓不同層次的學生都經(jīng)歷概念的形成、 鞏固 和應用過程。

  (三)教學目標

  1. 理解直線的傾斜角和斜率的概念, 理解直線的傾斜角的唯一性和斜率的存在性;

  2. 掌握過兩點的直線斜率的計算公式 ;

  3. 通過經(jīng) 歷從具體實例抽象出數(shù)學概念的過程,培養(yǎng)學生觀察、分析和概括能力;

  4 . 通過斜率概念的建立以及斜率公式的構建,幫助學生進一步體會數(shù)形結合的思想,培養(yǎng)學

  生嚴謹求簡的數(shù)學精神。

  重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。

  難點: 直線的傾斜角與斜率的概念的形成 ,斜率公式的構建。

  (四)教法和學法

  課堂教學應有利于學生的數(shù)學素質的形成與發(fā)展,即在課堂教學過程中,創(chuàng)設問題的情景,激發(fā)學生主動的發(fā)現(xiàn)問題解決問題,充分調動學生學習的主動性、積極性;有效的滲透數(shù)學思想方法,發(fā)展學生個性思維品質,這是本節(jié)課的教學原則。 根據(jù)這樣的教學原則,考慮到學生首次接觸解析幾何的內容及研究方法,所以我采用 設置問題串 的形式 , 啟發(fā)引導 學生 類比、聯(lián)想,產(chǎn)生知識遷移 ;通過 幾何畫板演示實驗、探索交流 相結合的教學方法激發(fā)學生 觀察、實驗,體驗知識的形成過程 ;由此循序漸進 , 使學生很自然達到本節(jié)課的學習目標。

  ( 五) 教學過程

  環(huán)節(jié) 1.指明研究方向 (3min)

  平面上的點可以用坐標表示,也就是幾何問題代數(shù)化。那么我們生活中見到的很多優(yōu)美的曲線能否用數(shù)來刻畫呢?

  簡介17 世紀法國數(shù)學家笛卡爾和費馬的數(shù)學史 。

  【設計意圖】 使學生對解析幾何的歷史以及它的研究方向有一個大致的了解

  由此引入課題(直線的傾斜角與斜率)

  環(huán)節(jié)2.活動探究(13min)

  【設計意圖】 讓學生經(jīng)歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產(chǎn)生是自然的,并不是硬性規(guī)定的。

  (探究活動一:傾斜角概念的得出)

  問題1. 如圖,對于平面直角坐標系內過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區(qū)別在哪里?

  【設計意圖】引導學生發(fā)現(xiàn)過定點的不同直線,其傾斜程度不同。從而發(fā)現(xiàn)過直線上一點和直線的傾斜程度也能確定一條直線。

  問題2. 在直角坐標系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢?

  【設計意圖】引導學生探索描述直線的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線L與x軸相交,我們取x軸為基準,x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。

  問題3. 依據(jù)傾斜角的定義,小組合作探究傾斜角的范圍是多少?

  (探究活動二:斜率概念的得出)

  問題4. 日常生活中,還有沒有表示傾斜程度的量?

  問題5 . 如果使用“傾斜角”的概念,坡度實際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度?

  由學生已知坡度中“前進量”不能為0 ,補充 傾斜角 是90゜的直線 沒有斜率

  【設計意圖】 遷移、類比得出 我們把 一條直線的 傾斜角 的正切值叫做 這條 直線的 斜率 , 讓學生感受數(shù)學概念來源于生活,并體驗從直觀到抽象的過程培養(yǎng)學生觀察、歸納、聯(lián)想的能力。

  環(huán)節(jié) 3.過程體驗(斜率公式的發(fā)現(xiàn))(10min)

  問題6. 兩點能確定一條直線,那么兩點能確定一條直線的斜率么?

  先由每名學生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。

  為了深化對公式的理解,完善對公式的認識,我設計了如下三個思考問題:

  思考1:如果直線AB//x軸,上述結論還適用嗎?

  思考2:如果直線AB//y軸,上述結論還適用嗎?

  思考3:交換A、B位置,對比值有影響嗎?

  在學生充分思考、討論的基礎上,借助信息技術工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學生親自操作幾何畫板,改變直線的傾斜程度,動態(tài)演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學生更好的把握斜率公式。

  環(huán)節(jié)4. 操作建構(10min)

  第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。

  學生獨立完成后,請三位學生作答,師生共同評析,明確斜率公式的運用,強調可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。

  第二部分 ( 教材例二 ) : 在平面直角坐標系中,畫出經(jīng)過原 點且斜率分別為1,-1,2及-3的直線

  本題要求學生畫圖,目的是加強數(shù)形結合,我將請兩位同學上臺板演,其余同學在練習本上完成,因為直線經(jīng)過原點,所以只要在找出另外一點就可確定,再推導斜率公式時,學生已經(jīng)知道,斜率k的值與直線上P1,P2的位置無關,因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。

  環(huán)節(jié) 5.小結作業(yè)(4min)

  1、本節(jié)課你學到了哪些新的概念?他們之間有什么樣 的關系?

  2、怎樣求出已知兩點的直線的斜率?

  3 、本節(jié)課你還有哪些問題?

  兩點 直線 傾斜角 斜率

  一點一方向

  作業(yè): 必做題: P.86 第1,2,題

  選做題: P.90 探究與發(fā)現(xiàn):魔法師的地毯

  以上五個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,以明線和暗線雙線滲透。并注意調動學生自主探究與合作交流。注意教師適時的點撥引導,學生主體地位和教師的主導作用 得以 體現(xiàn)。能夠較好的實現(xiàn)教學目標,也使課標理念能夠很好的得到落實。

  (六) 板書設計

  3.1.1 直線的傾斜角與斜率

  1定義: 傾斜角 學生板演

  斜率

  2.斜率k與傾斜角之間的關系

  3.斜率公式

高中數(shù)學說課稿15

  各位評委老師你們好,我是第?號選手。我今天說課的題目是《 》,我將從教材分析,教法,學法,教學程序,等幾個方面進行我的說課。

  一,教材分析

  這部分我主要從3各方面闡述

  1, 教材的地位和作用

  《 》是北師大版必修?第?章第?節(jié)的內容,在此之前,同學們已經(jīng)學習了、,這些對本節(jié)課的學習有一定的鋪墊作用,同是學好本節(jié)的內容不僅加深前面所學習的知識,而且為后面我們將要學習的?知識打好基礎,?所以說本節(jié)課的學習在整個高中數(shù)學學習過程中占有重要地位!

  2.根據(jù)教學大綱的規(guī)定,教學內容的要求,教學對象的實情我確定了如下3維教學目標(i)知識目標:

  II能力目標;初步培養(yǎng)學生歸納,抽象,概括的思維能力。

  訓練學生認識問題,分析問題,解決問題的能力

  III情感目標;通過學生的探索,史學生體會數(shù)學就在我們身邊,讓學生發(fā)現(xiàn)生活的數(shù)學,培養(yǎng)不斷超越的創(chuàng)新品質,提高數(shù)學素養(yǎng)。

  3, 結合以上分析以及高一學生的人知水平我確定啦本節(jié)課的重難點

  教學重點:

  教學難點;

  二,教法

  教學方法是完成教學任務的手段,恰當?shù)膶W者教學方法至關重要,根據(jù)本節(jié)課的教學內容,考慮到高一學生已經(jīng)初步具有一定的探索能力,并喜歡挑戰(zhàn)問題的實際情況,為啦更有效的突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的知道思想。我主要采用 問題探究法 引導發(fā)現(xiàn)發(fā),案例教學法,講授法,在教學過程中精心設計帶有啟發(fā)性和思考性的問題,滿足學生探索的欲望,培養(yǎng)學生的學習興趣,激發(fā)來自學生主體最有利的動力。并運用多媒體課件的形式,更形象直觀,提高教學效果的同時加大啦課堂密度!

  學法

  根據(jù)學生的年齡特征,運用訊息漸進,逐步升入,理論聯(lián)系實際的規(guī)律,讓學生從問題中質疑,嘗試,歸納,總結,運用。培養(yǎng)學生發(fā)現(xiàn)問題,研究問題,分析問題的能力。自主參與知識的發(fā)生,發(fā)展,形成過程,完成從感性認識 到理性思維的質的飛躍,史學生在知識和能力方面都有所提高。

  三,教學程序

  1, 創(chuàng)設情境,提出問題

  讓學生產(chǎn)生強烈的問題意識,學生試著利用以前的知識經(jīng)驗,同化索引出當前學習的新知識,激發(fā)學習的興趣和動機。

  2, 引導探究,直奔主題。(揭示概念)

  參用小組合作的方式,各小組派代表發(fā)表成果,教師作為教學的引導者,給予肯定的評價,并給出一定的指導,最后師生共同得出??!教師引導學生進一步學習。整個過程充分突出學生的主體地位,培養(yǎng)學生合作探究的能力,激發(fā)興趣,更讓學生在思考學術問題以及解決數(shù)學問題的思想方法上有更深的交流。

  3, 自我嘗試,初步應用

  在講解是,不僅在于怎樣接,更在于為什么這樣解,及時引導學生探究運用知識,解決問題的方法,及時對解題方法和規(guī)律進行概括,有利于培養(yǎng)學生的思維能力。 4 .當堂訓練,鞏固深化(反饋矯正)

  通過學生的主體參與,讓學生鞏固所學的知識,實現(xiàn)對知識再認識的以及在數(shù)學解題思想方法層面上進一步升華

  5,歸納小結,回顧反思

  從知識,方法,經(jīng)驗等方面進行總結。讓學生思考本節(jié)課學到啦那些知識,還有那些疑問。本節(jié)課最大的體驗。本節(jié)課你學會那些技能。

  知識性的內容小結,可以把課堂教學傳授的知識盡快轉化為學生的素養(yǎng),數(shù)學思想發(fā)放的小結,可以使學生更深刻地理解數(shù)學思想發(fā)放在解題中的地位和作用,并且逐步培養(yǎng)學生良好的個性品質目標。

  ,6,變式延伸,布置作業(yè)

  必做題,對本屆課學生知識水平的反饋。選作題,對本節(jié)課知識內容的延伸。使不同層次學生都可以收獲成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,讓每個學生在原有的基礎上有所發(fā)展。做到人人學數(shù)學,人人學不同的數(shù)學。

  7板書設計

  力圖簡潔,形象,直觀,概括以便學生易于掌握。

  四,教學評價

  學生學習結果評價當然重要,但是學習過程的評價更加重要。本節(jié)課中高度重視學生學習過程中的參與度,自信心,團隊精神,合作意識,獨立思考習慣的養(yǎng)成。數(shù)學發(fā)現(xiàn)的能力,以及學習的興趣和成就感,,學生熟悉的問題情境可以激發(fā)學生的學習興趣,問題串的設計可以讓更多學生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以駐京生生交流,知識的生成和問題的解決可以讓學生感受到成功的喜悅?b密的思考可以培養(yǎng)學生獨立思考的習慣,讓學生在教室評價,學生評價以及自我評價的過程中體驗知識的積累,探索能力的長進和思維品質的提高,為學生的可持續(xù)發(fā)展打下基礎,

  以上就是我的說課內容。不當之處,希望各位老師給予指正。謝謝各位評委老師!你們幸苦啦!

【高中數(shù)學說課稿】相關文章:

高中數(shù)學的說課稿11-04

高中數(shù)學經(jīng)典說課稿范文06-24

高中數(shù)學集合說課稿11-12

高中數(shù)學面試說課稿11-18

高中數(shù)學《集合》說課稿10-31

高中數(shù)學函數(shù)的說課稿11-17

高中數(shù)學的說課稿范文04-29

高中數(shù)學說課稿05-01

高中數(shù)學說課稿06-09

高中數(shù)學的優(yōu)秀說課稿12-04