久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學(xué)說課稿

時(shí)間:2022-11-24 16:46:14 高中說課稿 我要投稿

高中數(shù)學(xué)說課稿【薦】

  作為一名人民教師,時(shí)常需要編寫說課稿,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。那么什么樣的說課稿才是好的呢?下面是小編收集整理的高中數(shù)學(xué)說課稿,歡迎閱讀與收藏。

高中數(shù)學(xué)說課稿【薦】

高中數(shù)學(xué)說課稿1

  各位評(píng)委,老師們:大家好!

  很高興參加這次說課活動(dòng)。這對(duì)我來說也是一次難得的學(xué)習(xí)和鍛煉的機(jī)會(huì),感謝各位老師在百忙之中來此予以指導(dǎo)。希望各位評(píng)委和老師們對(duì)我的說課內(nèi)容提出寶貴意見。

  我說課的內(nèi)容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級(jí)中學(xué)教科書(試驗(yàn)修訂本—必修)<數(shù)學(xué)>第一冊(cè)下,教學(xué)內(nèi)容為第96頁至98頁第五章第一節(jié)。本校是浙江省一級(jí)重點(diǎn)中學(xué),學(xué)生基礎(chǔ)相對(duì)較好。我在進(jìn)行教學(xué)設(shè)計(jì)時(shí),也充分考慮到了這一點(diǎn)。

  下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過程的設(shè)計(jì)四個(gè)方面來匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。

  一說教材

 。1)地位和作用

  向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運(yùn)算(運(yùn)算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實(shí)際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。

  平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對(duì)向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識(shí)體系奠定了知識(shí)和方法基礎(chǔ)。

 。2)教學(xué)結(jié)構(gòu)的調(diào)整

  課本在這一部分內(nèi)容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認(rèn)知過程和探究過程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨(dú)立完成。

 。3)重點(diǎn),難點(diǎn),關(guān)鍵

  由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識(shí)的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點(diǎn)。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計(jì)的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗(yàn),多數(shù)學(xué)生對(duì)向量的認(rèn)識(shí)還比較單一,僅僅考慮其大小,忽略其方向,這對(duì)學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對(duì)向量的理解。

  二說教學(xué)目標(biāo)的確定

  根據(jù)本課教材的特點(diǎn),新大綱對(duì)本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標(biāo):

 。1)基礎(chǔ)知識(shí)目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會(huì)用字母表示向量,能讀寫已知圖中的向量。會(huì)根據(jù)圖形判定向量是否平行,共線,相等。

 。2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問題,分析問題,解決問題的能力。

 。3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂趣。

  三說教學(xué)方法的選擇

  Ⅰ教學(xué)方法

  本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

 。1)由教材的特點(diǎn)確立類比思維為教學(xué)的主線。

  從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運(yùn)用類比作為思維的主線進(jìn)行教學(xué)。讓學(xué)生充分體會(huì)數(shù)學(xué)知識(shí)與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過程。

 。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習(xí)方法

  通常學(xué)生對(duì)于概念課學(xué)起來很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表揚(yáng),多肯定來激勵(lì)他們的學(xué)習(xí)熱情?紤]到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對(duì)自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識(shí),所以在教學(xué)中我通過創(chuàng)設(shè)問題情境,啟發(fā)引導(dǎo)學(xué)生運(yùn)用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨(dú)立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過程,突出學(xué)生的主體作用。

 、蚪虒W(xué)手段

  本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計(jì)算機(jī)來輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺(tái);計(jì)算機(jī)演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對(duì)概念的理解和難點(diǎn)的突破。

  四教學(xué)過程的設(shè)計(jì)

 、裰R(shí)引入階段———提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

 。1)創(chuàng)設(shè)情境——引入概念

  數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。

  由生活中具體的向量的實(shí)例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

 。2)觀察歸納——形成概念

  由實(shí)例得出有向線段的概念,有向線段的三個(gè)要素:起點(diǎn),方向,長度。明確知道了有向線段的起點(diǎn),方向和長度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設(shè)計(jì),引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):向量的概念及其幾何表示。

 。3)討論研究——深化概念

  在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個(gè)問題:

  ①向量的要素是什么?

  ②向量之間能否比較大?

  ③向量與數(shù)量的區(qū)別是什么?

  同時(shí)指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。

 、蛑R(shí)探索階段———探索平面向量的平行向量。相等向量等概念

 。1)總結(jié)反思——提高認(rèn)識(shí)

  方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

 。2)即時(shí)訓(xùn)練—鞏固新知

  為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識(shí)。

  [練習(xí)1]判斷下列命題是否正確,若不正確,請(qǐng)簡述理由.

 、傧蛄颗c是共線向量,則A、B、C、D四點(diǎn)必在一直線上;

 、趩挝幌蛄慷枷嗟;

 、廴我幌蛄颗c它的相反向量不相等;

  ④四邊形ABCD是平行四邊形的充要條件是=;

 、菽0是一個(gè)向量方向不確定的充要條件;

 、薰簿的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.

 。劬毩(xí)2]下列命題正確的是( )

  A.a(chǎn)與b共線,b與c共線,則a與c也共線

  B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)

  C.向量a與b不共線,則a與b都是非零向量

  D.有相同起點(diǎn)的兩個(gè)非零向量不平行

 、笾R(shí)應(yīng)用階段————共線向量,相等向量等概念的初步應(yīng)用

  在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復(fù)雜圖形中觀察,辨認(rèn)平行,相等的有向線段。選用本題的目的是讓學(xué)生進(jìn)行獨(dú)立思考,自主探究,交流討論等探索活動(dòng),加深對(duì)概念的理解和對(duì)難點(diǎn)的突破。

  例如圖所示,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)

  具體教學(xué)安排如下:

  (1)分析解決問題

  先引導(dǎo)學(xué)生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當(dāng)它們的模相等,同時(shí)方向又相同時(shí),才能稱它們相等。進(jìn)而進(jìn)行正確的辨認(rèn),直至最終解決問題。

 。2)歸納解題方法

  主要引導(dǎo)學(xué)生歸納以下兩個(gè)問題:①零向量的方向是任意的,它只與零向量相

  等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。

 、魧W(xué)習(xí),小結(jié)階段———?dú)w納知識(shí)方法,布置課后作業(yè)

  本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識(shí),技能,方法的一般規(guī)律,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。

  具體的教學(xué)安排如下:

 。1)知識(shí),方法小結(jié)在知識(shí)層面上我首先引導(dǎo)學(xué)生回顧本節(jié)課的主要內(nèi)容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對(duì)它們進(jìn)行類比,加深對(duì)每個(gè)概念的理解。

  在方法層面上我將帶領(lǐng)學(xué)生回顧探索過程中用到的思維方法和數(shù)學(xué)方法如:

  類比,數(shù)形結(jié)合,等價(jià)轉(zhuǎn)化等進(jìn)行強(qiáng)調(diào)。

 。2)布置課后作業(yè)

  閱讀教材96至97頁內(nèi)容,整理課堂筆記,習(xí)題5。1第1,2,3題。

高中數(shù)學(xué)說課稿2

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。"用概率預(yù)測(cè)隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對(duì)概率意義的理解,經(jīng)過多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法。

  過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。

  情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對(duì)立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計(jì)問題一,學(xué)生經(jīng)過對(duì)問題一的探究,一方面復(fù)習(xí)前面學(xué)過的"確定事件和不確定事件"的知識(shí),為學(xué)好本節(jié)資料理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大小)。引導(dǎo)學(xué)生對(duì)問題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過程。

  2、歸納概括

  學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。

  引導(dǎo)學(xué)生重新對(duì)問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題本事,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。

  3、舉例應(yīng)用

 、乓龑(dǎo)學(xué)生對(duì)教材書例題、問題一、問題二中問題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑(dǎo)學(xué)生對(duì)練習(xí)中的問題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解。

  4、深化發(fā)展

 、旁O(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。

 、谱寣W(xué)生設(shè)計(jì)活動(dòng)資料,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新本事。

高中數(shù)學(xué)說課稿3

  各位評(píng)委:下午好!

  我叫 ,來自 。今天我說課的課題《 》(第 課時(shí))。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  《 》是人教版出版社 第 冊(cè)、第 單元的內(nèi)容。《》既是 在知識(shí)上的延伸和發(fā)展,又是本章 的運(yùn)用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。

 。ǘ、學(xué)情分析

  通過前一階段的教學(xué),學(xué)生對(duì) 的認(rèn)識(shí)已有了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)層面:

  知識(shí)層面:學(xué)生在已初步掌握了 。

  能力層面:學(xué)生在初步已經(jīng)掌握了用

  初步具備了 思想。 情感層面:學(xué)生對(duì)數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.

 。ㄈ┙虒W(xué)課時(shí)

  本節(jié)內(nèi)容分 課時(shí)學(xué)習(xí)。(本課時(shí),品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。)

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識(shí)與技能:

  過程與方法:

  情感態(tài)度:

 。ɡ纾簞(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神. 通過 對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),對(duì)學(xué)生進(jìn)行辨證唯物主義教育)

  在探索過程中,培養(yǎng)獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時(shí),讓學(xué)生養(yǎng)成理性思維的品質(zhì)。

  三、重難點(diǎn)分析

  重點(diǎn)確定為:

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解

  其本質(zhì)就是

  本節(jié)課的難點(diǎn)確定為:

  要突破這個(gè)難點(diǎn),讓學(xué)生歸納

  作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計(jì)教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現(xiàn)。

  五、說教學(xué)過程

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

  (一)創(chuàng)設(shè)情景………………….

 。ǘ┍扰f悟新………………….

 。ㄈw納提煉…………………

 。ㄋ模⿷(yīng)用新知,熟練掌握 …………………

 。ㄎ澹┛偨Y(jié)…………………

 。┳鳂I(yè)布置…………………

 。ㄆ撸┌鍟O(shè)計(jì)…………………

  以上是我對(duì)本節(jié)課的一些粗淺的認(rèn)識(shí)和構(gòu)想,如有不妥之處,懇請(qǐng)各位專家批評(píng)指正。謝謝

  著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計(jì)劃”、“實(shí)現(xiàn)計(jì)劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進(jìn)行分解,使我們對(duì)解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?

高中數(shù)學(xué)說課稿4

  一、說教材

  1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進(jìn)一步體會(huì)函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,從中體會(huì)函數(shù)的模型思想。因此本節(jié)課重點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。

  2.學(xué)情分析:對(duì)八年級(jí)學(xué)生來說,雖然他們已經(jīng)對(duì)函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對(duì)新的一次函數(shù)時(shí),還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念。

  二、說教學(xué)目標(biāo)

  根據(jù)本人對(duì)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:

  1.從現(xiàn)實(shí)的情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)概念的理解。

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。

  三、說教法

  本節(jié)課從知識(shí)結(jié)構(gòu)呈現(xiàn)的角度看,為了實(shí)現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識(shí)→應(yīng)用知識(shí)”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識(shí)的生成與發(fā)展的過程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計(jì)了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問題讓學(xué)生發(fā)現(xiàn)新知,把上述問題進(jìn)行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評(píng)價(jià)、內(nèi)化新知。

  四、說學(xué)法

  我認(rèn)為學(xué)生將實(shí)際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學(xué)生攻克難點(diǎn)創(chuàng)造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過事例幫助完成定義。

  好學(xué)教育:

  因此,我采用了“問題式探究法”的教法,利用多媒體設(shè)置豐富的問題情境,讓學(xué)生的思維由問題開始,到問題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著問題的深入而跳躍。

高中數(shù)學(xué)說課稿5

  一、教材分析

  1、教材地位和作用

  二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對(duì)位置,同時(shí)它也是空間中線線、線面、面面垂直關(guān)系的一個(gè)匯集點(diǎn)。搞好本節(jié)課的學(xué)習(xí),對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運(yùn)用。

  2、教學(xué)目標(biāo)

  根據(jù)上面對(duì)教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo):

  認(rèn)知目標(biāo):

 。1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

 。2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

  能力目標(biāo):以培養(yǎng)學(xué)生的創(chuàng)新能力和動(dòng)手能力為重點(diǎn)。

  (1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。

 。2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。

  教育目標(biāo):

  (1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,從而增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

  (2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

  3、本節(jié)課教學(xué)的重、難點(diǎn)是兩個(gè)過程的教學(xué):

 。1)二面角的平面角概念的形成過程。

  (2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。

  其理由如下:

 。1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學(xué)認(rèn)識(shí)產(chǎn)生的辯證過程,與學(xué)生的認(rèn)知規(guī)律相悖,給學(xué)生的學(xué)習(xí)造成了很大的困難,非常不利于學(xué)生創(chuàng)新能力、獨(dú)立思考能力以及動(dòng)手能力的培養(yǎng)。

 。2)現(xiàn)代認(rèn)知學(xué)認(rèn)為,揭示知識(shí)的形成過程,對(duì)學(xué)生學(xué)習(xí)新知識(shí)是十分必要的。同時(shí)通過展現(xiàn)知識(shí)的發(fā)生、發(fā)展過程,給學(xué)生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學(xué)生在整個(gè)教學(xué)過程中始終處于積極的思維狀態(tài),進(jìn)而培養(yǎng)他們獨(dú)立思考和大膽求索的精神,這樣才能全面落實(shí)本節(jié)課的教學(xué)目標(biāo)。

  二、指導(dǎo)思想和教學(xué)方法

  在設(shè)計(jì)本教學(xué)時(shí),主要貫徹了以下兩個(gè)思想:

  1、樹立以學(xué)生發(fā)展為本的思想。通過構(gòu)建以學(xué)習(xí)者為中心、有利于學(xué)生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動(dòng)手操作的機(jī)會(huì),鼓勵(lì)他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅(jiān)持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學(xué)法創(chuàng)新有機(jī)地統(tǒng)一起來,因?yàn)橹挥薪處焺?chuàng)新地教,學(xué)生創(chuàng)新地學(xué),才能營建一個(gè)有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。

  首先是教材創(chuàng)新。

 。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。

 。2)在引入定義之后,例題講解之前,引導(dǎo)學(xué)生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。

  (3)重新編排例題。

  其次是教法創(chuàng)新。采用多種創(chuàng)新的教學(xué)方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學(xué)方法。

  這組教學(xué)方法的特點(diǎn)是教師通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識(shí)的形成過程,使教學(xué)活動(dòng)真正建立在學(xué)生自主活動(dòng)和探索的基礎(chǔ)上,著力培養(yǎng)學(xué)生的創(chuàng)新能力。

  這組教學(xué)方法使得學(xué)生在解決問題的過程中學(xué)數(shù)學(xué),用數(shù)學(xué),不僅強(qiáng)調(diào)動(dòng)腦思考,而且強(qiáng)調(diào)動(dòng)手操作,親身體驗(yàn),注重多感官參與、多種心理能力的投入,通過學(xué)生全面、多樣的主體實(shí)踐活動(dòng),促進(jìn)他們獨(dú)立思考能力、動(dòng)手能力等多方面素質(zhì)的整體發(fā)展。

  教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用《幾何畫板》制作課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),教師可預(yù)先做好一些模型。

  最后是學(xué)法創(chuàng)新。意在指導(dǎo)學(xué)生會(huì)創(chuàng)新地學(xué)。

  1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

  3、會(huì)學(xué):通過自已親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新。

  三、程序安排

 。ㄒ唬、二面角

  1、揭示概念產(chǎn)生背景。

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。

  問題情境1、我們是如何定量研究兩平行平面的相對(duì)位置的?

  問題情境2、立幾中常用距離和角來定量描述兩個(gè)元素之間的相對(duì)位置,為什么不引入兩平行平面所成的角?

  問題情境3、我們應(yīng)如何定量研究兩個(gè)相交平面之間的相對(duì)位置呢?

  通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)檠芯績上嘟黄矫娴南鄬?duì)位置的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開。

  2、展現(xiàn)概念形成過程。

高中數(shù)學(xué)說課稿6

  各位評(píng)委、各位老師:大家好!

  我叫李長杉,來自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個(gè)問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個(gè)方面逐一加以分析和說明。

  一。教材內(nèi)容分析:

  1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過的集合知識(shí)的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會(huì)借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

  2.教學(xué)目標(biāo)定位。

  根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對(duì)解不等式過程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神。

  3.教學(xué)重點(diǎn)、難點(diǎn)確定。

  本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。

  二。教法學(xué)法分析:

  數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí)、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動(dòng)。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過程的每個(gè)環(huán)節(jié)。

  三。教學(xué)過程分析:

  1.創(chuàng)設(shè)情景——引入新課。我們常說"興趣是最好的老師",長期以來,學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對(duì)學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識(shí)切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對(duì)于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

  2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會(huì)有太大的問題。在這個(gè)過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對(duì)比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識(shí),如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對(duì)應(yīng)方程都有兩個(gè)不等實(shí)根,例3對(duì)應(yīng)方程有兩相等實(shí)根,例4對(duì)應(yīng)方程無實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

  3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號(hào)寫出解集即可,必要時(shí)也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

  4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1-4題。本環(huán)節(jié)請(qǐng)不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

  5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

  四。課堂意外預(yù)案:

  新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵(lì)學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評(píng)性。在課堂上學(xué)生往往會(huì)提出讓老師感到"意外"的問題,我在平時(shí)的教學(xué)中重視對(duì)"課堂意外預(yù)案"的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會(huì)出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動(dòng)尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個(gè)"意外預(yù)案".

  1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時(shí),可能會(huì)問到轉(zhuǎn)化為不等式組{ 或{ 求解對(duì)不對(duì)。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。

  2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會(huì)出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。

  以上是我對(duì)本節(jié)課的一些粗淺的認(rèn)識(shí)和構(gòu)想,如有不妥之處,懇請(qǐng)各位專家、各位同仁批評(píng)指正。謝謝大家!

高中數(shù)學(xué)說課稿7

  一.說教材

  1.本節(jié)課主要內(nèi)容是線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標(biāo)函數(shù)。應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。

  2.地位作用:線性規(guī)劃是數(shù)學(xué)規(guī)劃中理論較完整、方法較成熟、應(yīng)用較廣泛的一個(gè)分支,它可以解決科學(xué)研究、工程設(shè)計(jì)、經(jīng)濟(jì)管理等許多方面的實(shí)際問題。簡單的線性規(guī)劃是在學(xué)習(xí)了直線方程的基礎(chǔ)上,介紹直線方程的一個(gè)簡單應(yīng)用。通過這部分內(nèi)容的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識(shí)和解決實(shí)際問題的能力。

  3.教學(xué)目標(biāo)

  (1)知識(shí)與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標(biāo)函數(shù)。

  了解并初步應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。

  (2)過程與方法:提高學(xué)生數(shù)學(xué)地提出、分析和解決問題的能力,發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)含的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

  (3)情感、態(tài)度與價(jià)值觀:體會(huì)數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想,逐步認(rèn)識(shí)數(shù)學(xué)的應(yīng)用價(jià)值,提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的自信心。

  4.重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和用好圖解法

  難點(diǎn):如何用圖解法尋找線性規(guī)劃的最優(yōu)解。

  二.說教學(xué)方法

  教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:

  (1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實(shí)驗(yàn)、探索、歸納。這能充分調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性。

  (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動(dòng)”的方法。這有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn)、解決難點(diǎn);也有利于發(fā)揮學(xué)生的創(chuàng)造性。

  (3)體現(xiàn)“等價(jià)轉(zhuǎn)化”、“數(shù)形結(jié)合”的思想方法。這樣可發(fā)揮學(xué)生的主觀能動(dòng)性,有利于提高學(xué)生的各種能力。

  三.說學(xué)法指導(dǎo)

  教給學(xué)生方法比教給學(xué)生知識(shí)更重要,本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):觀察分析、聯(lián)想轉(zhuǎn)化、動(dòng)手實(shí)驗(yàn)、練習(xí)鞏固。

  (1)觀察分析:通過引例讓學(xué)生觀察化舊知為新知,造成學(xué)生認(rèn)知沖突。

  (2)聯(lián)想轉(zhuǎn)化:學(xué)生通過分析、探索、得出解決問題的方法。

  (3)動(dòng)手實(shí)驗(yàn):通過作圖、實(shí)驗(yàn)、從而得出一般解題步驟。

  (4)練習(xí)鞏固:讓學(xué)生知道數(shù)學(xué)重在運(yùn)用,從而檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。

  四.說教學(xué)程序

  1、導(dǎo)入課題: 由一個(gè)不等式組表示平面區(qū)域轉(zhuǎn)化為在此平面區(qū)域內(nèi)一二元一次數(shù)的最值問題,造成學(xué)生認(rèn)知沖突。

  3、導(dǎo)學(xué)達(dá)標(biāo)之一:創(chuàng)設(shè)情境、形成概念

  通過引例的問題讓學(xué)生探索解決新問題的方法。

  (設(shè)計(jì)意圖:利用已經(jīng)學(xué)過的知識(shí)逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成過程,從而提高學(xué)生數(shù)學(xué)的地提出、分析和解決問題的能力。)

  然后老師逐步引導(dǎo),動(dòng)手實(shí)驗(yàn),化抽象為直觀。從而得到解決此類問題的方法,并對(duì)比引例給出相關(guān)概念:線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察和分析問題,激發(fā)學(xué)生的探索欲望,從而培養(yǎng)學(xué)生的解決問題和總結(jié)歸納的能力。)

  4.導(dǎo)學(xué)達(dá)標(biāo)之二:針對(duì)問題、舉例講解、形成技能

  例一:課本61頁例3

  (創(chuàng)設(shè)意境:,練習(xí)是使學(xué)生明白數(shù)學(xué)來源于實(shí)際又運(yùn)用于實(shí)際,同時(shí)使學(xué)生進(jìn)初步應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。)

  6.鞏固目標(biāo):

  練習(xí)一:學(xué)生做課堂練習(xí)P64例4

  (叫學(xué)生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實(shí)際意義,考慮取值范圍。造成新的認(rèn)知沖突,從而研究探索,得到整點(diǎn)最優(yōu)解的一種求法。)

  練習(xí)二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準(zhǔn)備加工成書桌和書廚出售,他通過調(diào)查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個(gè)書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個(gè)書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)

  (設(shè)計(jì)意圖:通過實(shí)際問題,激發(fā)學(xué)生興趣,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),力求學(xué)生能夠?qū)ΜF(xiàn)實(shí)生活中蘊(yùn)含的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。)

  7.歸納與小結(jié):

  小結(jié)本課的主要學(xué)習(xí)內(nèi)容是什么?(由師生共同來完成本課小結(jié))

  (創(chuàng)設(shè)意境:讓學(xué)生參與小結(jié),引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行反思,有利于加強(qiáng)學(xué)生記憶和形成良好的數(shù)學(xué)思維習(xí)慣)

  8.布置作業(yè):

  P64. 2

  五.說板書設(shè)計(jì)

  板書設(shè)計(jì)為表格式,這樣的板書簡明清楚,重點(diǎn)突出,加深學(xué)生對(duì)重點(diǎn)知識(shí)的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。

高中數(shù)學(xué)說課稿8

  1.教材分析

  1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)

  (1)本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容

  (2)包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式

  1-2教材所處地位、作用和前后聯(lián)系

  本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

  可見,本課有承前啟后的作用。

  1-3教學(xué)大綱要求

  掌握點(diǎn)到直線的距離公式

  1-4高考大綱要求及在高考中的顯示形式

  掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。

  1-5教學(xué)目標(biāo)及確定依據(jù)

  教學(xué)目標(biāo)

  (1)掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點(diǎn)線距離和線線距離。

  (2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

  (3)認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。

  (4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

  確定依據(jù):

  中華人民共和國教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

  1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

 。1)重點(diǎn):點(diǎn)到直線的距離公式

  確定依據(jù):由本節(jié)在教材中的地位確定

  (2)難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)

  確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。

  分析“嘗試性題組”解題思路可突破難點(diǎn)

  (3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。

  2.教法

  2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

  確定依據(jù):

  (1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。

  (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

  2-2教具:多媒體和黑板等傳統(tǒng)教具

  3.學(xué)法

  3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。

  一句話:還課堂以生命力,還學(xué)生以活力。

  3-2學(xué)情:

  (1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。

 。2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。

  (3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問題數(shù)學(xué)化,是每個(gè)追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過程,錘煉意志,培養(yǎng)能力。

  3-3學(xué)具:直尺、三角板

  3. 教學(xué)程序

  時(shí),此時(shí)又怎樣求點(diǎn)A到直線

  的距離呢?

  生: 定性回答

  點(diǎn)明課題,使學(xué)生明確學(xué)習(xí)目標(biāo)。

  創(chuàng)設(shè)“不憤不啟,不悱不發(fā)”的學(xué)習(xí)情景。

  練習(xí)

  比較

  發(fā)現(xiàn)

  歸納

  討論

  的距離為d

  (1) A(2,4),

  :x = 3, d=_____

  (2) A(2,4),

 。簓 = 3,d=_____

  (3) A(2,4),

 。簒 – y = 0,d=_____

  嘗試性題組告訴學(xué)生下手不難,還負(fù)責(zé)特例檢驗(yàn),從而增強(qiáng)學(xué)生參與的信心。

  請(qǐng)三個(gè)同學(xué)上黑板板演

  師: 請(qǐng)這三位同學(xué)分別說說自己的解題思路。

  生: 回答

  教學(xué)機(jī)智:應(yīng)沉淀為三種思路:一,根據(jù)定義轉(zhuǎn)化為定點(diǎn)到垂足的距離;二,利用等積法轉(zhuǎn)化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。

  視回答的情況,老師進(jìn)行肯定、修正或補(bǔ)充提問:“還有其他不同的思路嗎”。

  說解題思路,一是讓學(xué)生清晰有條理的表達(dá)自己的思考過程,二是其求解過程提示了證明的途徑(根據(jù)定義或畫坐標(biāo)線時(shí)正好交出一個(gè)直角三角形)

  師:很好,剛才我們解決了定點(diǎn)到特殊直線的距離問題,那么,點(diǎn)P(x0,y0)到一般直線

 。篈x+By+C=0(A,B≠0)的距離又怎樣求?

  教學(xué)機(jī)智:如學(xué)生反應(yīng)不大,則補(bǔ)充提問:上面三個(gè)題的解題思路對(duì)這個(gè)問題有啟示嗎?

  生:方案一:根據(jù)定義

  方案二:根據(jù)等積法

  方案三: ......

  設(shè)置此問,一是使學(xué)生的認(rèn)知由特殊向一般轉(zhuǎn)化,發(fā)現(xiàn)可能的方法,二是讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索和創(chuàng)造,感受數(shù)學(xué)的生機(jī)和樂趣。

  師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。

  “師生共作”體現(xiàn)新型師生觀,且//時(shí),又怎樣求這兩線的距離?

  生:計(jì)算得線線距離公式

  師:板書點(diǎn)到直線的距離公式,兩平行線間距離公式

  “沒有新知識(shí),新知識(shí)均是舊知識(shí)的組合”,創(chuàng)設(shè)此問可發(fā)揮學(xué)生的創(chuàng)造性,增加學(xué)生的成就感。

  反思小結(jié)

  經(jīng)驗(yàn)共享

  (六 分 鐘)

  師: 通過以上的學(xué)習(xí),你有哪些收獲?(知識(shí),能力,情感)。有哪些疑問?誰能答這些疑問?

  生: 討論,回答。

  對(duì)本節(jié)課用到的技能,數(shù)學(xué)思維方法等進(jìn)行小結(jié),使學(xué)生對(duì)本節(jié)知識(shí)有一個(gè)整體的認(rèn)識(shí)。

  共同進(jìn)步,各取所長。

  練習(xí)

 。ㄎ 分 鐘)

  P53 練習(xí) 1, 2,3

  熟練的用公式來求點(diǎn)線距離和線線距離。

  再度延伸

 。ㄒ 分 鐘)

  探索其他推導(dǎo)方法

  “帶著問題進(jìn)課堂,帶著更多的問題出課堂”,讓學(xué)生真正學(xué)會(huì)學(xué)習(xí)。

  4. 教學(xué)評(píng)價(jià)

  學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:

  (1) 整理知識(shí)結(jié)構(gòu)

  (2) 總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法

  (3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因

  (4) 談?wù)勀銓?duì)老師教法的建議和要求。

  作用:

  (1) 通過反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過程。

  (2) 報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。

  (3) 及時(shí)了解學(xué)生學(xué)習(xí)過程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。

  5. 板書設(shè)計(jì)

  (略)

  6. 教學(xué)的反思總結(jié)

  心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。

高中數(shù)學(xué)說課稿9

  一、教學(xué)背景分析

 。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標(biāo)準(zhǔn)方程》是繼學(xué)習(xí)圓以后運(yùn)用“曲線與方程”思想解決二次曲線問題的又一實(shí)例,從知識(shí)上說,本節(jié)課是對(duì)坐標(biāo)法研究幾何問題的又一次實(shí)際運(yùn)用,同時(shí)也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎(chǔ);從方法上說,它為進(jìn)一步研究雙曲線、拋物線提供了基本模式和理論基礎(chǔ),因此本節(jié)課起到了承上啟下的重要作用.

 。ǘ┲攸c(diǎn)、難點(diǎn)分析:本節(jié)課的重點(diǎn)是橢圓的定義及其標(biāo)準(zhǔn)方程,標(biāo)準(zhǔn)方程的推導(dǎo)是本節(jié)課的難點(diǎn),要突破這一難點(diǎn),關(guān)鍵是引導(dǎo)學(xué)生正確選擇去根式的策略.

 。ㄈ⿲W(xué)情分析:在學(xué)習(xí)本節(jié)課前,學(xué)生已經(jīng)學(xué)習(xí)了直線與圓的方程,對(duì)曲線和方程的思想方法有了一些了解和運(yùn)用的經(jīng)驗(yàn),對(duì)坐標(biāo)法研究幾何問題也有了初步的認(rèn)識(shí),因此,學(xué)生已經(jīng)具備探究有關(guān)點(diǎn)的軌跡問題的知識(shí)基礎(chǔ)和學(xué)習(xí)能力,但由于學(xué)生學(xué)習(xí)解析幾何時(shí)間還不長、學(xué)習(xí)程度也較淺,并且還受到高二這一年齡段學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)的影響,在學(xué)習(xí)過程中難免會(huì)有些困難.如:由于學(xué)生對(duì)運(yùn)用坐標(biāo)法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會(huì)存在障礙.

  二、教學(xué)目標(biāo)設(shè)計(jì)

 。ㄒ唬┲R(shí)目標(biāo):掌握橢圓的定義及其標(biāo)準(zhǔn)方程;會(huì)根據(jù)條件寫出橢圓的標(biāo)準(zhǔn)方程;通過對(duì)橢圓標(biāo)準(zhǔn)方程的探求,再次熟悉求曲線方程的一般方法.

 。ǘ┠芰δ繕(biāo):學(xué)生通過動(dòng)手畫橢圓、分組討論探究橢圓定義、推導(dǎo)橢圓標(biāo)準(zhǔn)方程等過程,提高動(dòng)手能力、合作學(xué)習(xí)能力和運(yùn)用知識(shí)解決實(shí)際問題的能力.

  (三)情感目標(biāo):在形成知識(shí)、提高能力的過程中,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神.

  三、教法學(xué)法設(shè)計(jì)

 。ㄒ唬┙虒W(xué)方法設(shè)計(jì):為了更好地培養(yǎng)學(xué)生自主學(xué)習(xí)能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法.一方面我通過設(shè)置情境、問題誘導(dǎo)充分發(fā)揮主導(dǎo)作用;另一方面學(xué)生通過對(duì)我提供的素材進(jìn)行直觀觀察→動(dòng)手操作→討論探究→歸納抽象→總結(jié)規(guī)律的過程充分體現(xiàn)主體地位.

  使用多媒體輔助教學(xué)與自制教具相結(jié)合的設(shè)計(jì)方案,實(shí)現(xiàn)多媒體快捷、形象、大容量的優(yōu)勢(shì)與自制教具直觀、實(shí)用的優(yōu)勢(shì)的結(jié)合,既突出了知識(shí)的產(chǎn)生過程,又增加了課堂的趣味性.

  1.掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過程;

  2.能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握運(yùn)用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;

  3.通過對(duì)橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;

  4.通過橢圓的標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價(jià)轉(zhuǎn)化的思想方法,提高運(yùn)用坐標(biāo)法解決幾何問題的能力;

  5.通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識(shí).

  四、教學(xué)建議

  教材分析

  1.知識(shí)結(jié)構(gòu)

  2.重點(diǎn)難點(diǎn)分析

  重點(diǎn)是橢圓的定義及橢圓標(biāo)準(zhǔn)方程的兩種形式.難點(diǎn)是橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo).關(guān)鍵是掌握建立坐標(biāo)系與根式化簡的方法.

  橢圓及其標(biāo)準(zhǔn)方程這一節(jié)教材整體來看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標(biāo)準(zhǔn)方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對(duì)橢圓的研究放在了重點(diǎn),在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用.先講橢圓也與第七章的圓的方程銜接自然.學(xué)好橢圓對(duì)于學(xué)生學(xué)好圓錐曲線是非常重要的.

 。1)對(duì)于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對(duì)比圓的定義來理解.

  另外要注意到定義中對(duì)“常數(shù)”的限定即常數(shù)要大于.這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于時(shí)軌跡是一條線段;當(dāng)常數(shù)小于時(shí)無軌跡”.這樣有利于集中精力進(jìn)一步研究橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì).但講解橢圓的定義時(shí)注意不要忽略這兩種特殊情況,以保證對(duì)橢圓定義的準(zhǔn)確性.

 。2)根據(jù)橢圓的定義求標(biāo)準(zhǔn)方程,應(yīng)注意下面幾點(diǎn):

 、偾的方程依賴于坐標(biāo)系,建立適當(dāng)?shù)淖鴺?biāo)系,是求曲線方程首先應(yīng)該注意的地方.應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進(jìn)行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對(duì)稱軸,以這兩條對(duì)稱軸作為坐標(biāo)系的兩軸,不但可以使方程的推導(dǎo)過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

 、谠O(shè)橢圓的焦距為,橢圓上任一點(diǎn)到兩個(gè)焦點(diǎn)的距離為,令,這些措施,都是為了簡化推導(dǎo)過程和最后得到的方程形式整齊、簡潔,要讓學(xué)生認(rèn)真領(lǐng)會(huì).

 、墼诜匠痰耐茖(dǎo)過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時(shí)經(jīng)常遇到的問題,又是學(xué)生的難點(diǎn).要注意說明這類方程的化簡方法:①方程中只有一個(gè)根式時(shí),需將它單獨(dú)留在方程的一側(cè),把其他項(xiàng)移至另一側(cè);②方程中有兩個(gè)根式時(shí),需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項(xiàng).

 、芙炭茣蠈(duì)橢圓標(biāo)準(zhǔn)方程的推導(dǎo),實(shí)際上只給出了“橢圓上點(diǎn)的坐標(biāo)都適合方程“而沒有證明,”方程的解為坐標(biāo)的點(diǎn)都在橢圓上”.這實(shí)際上是方程的同解變形問題,難度較大,對(duì)同學(xué)們不作要求.

 。3)兩種標(biāo)準(zhǔn)方程的橢圓異同點(diǎn)

  中心在原點(diǎn)、焦點(diǎn)分別在軸上,軸上的橢圓標(biāo)準(zhǔn)方程分別為:,.它們的相同點(diǎn)是:形狀相同、大小相同,都有,.不同點(diǎn)是:兩種橢圓相對(duì)于坐標(biāo)系的位置不同,它們的焦點(diǎn)坐標(biāo)也不同.

  橢圓的焦點(diǎn)在軸上標(biāo)準(zhǔn)方程中項(xiàng)的分母較大;

  橢圓的焦點(diǎn)在軸上標(biāo)準(zhǔn)方程中項(xiàng)的分母較大.

  另外,形如中,只要,,同號(hào),就是橢圓方程,它可以化為.

 。4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個(gè)作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向?qū)W生說明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標(biāo)準(zhǔn)方程相同,那么這個(gè)軌跡是橢圓;第三是使學(xué)生知道,一個(gè)圓按某一個(gè)方向作伸縮變換可以得到橢圓.

高中數(shù)學(xué)說課稿10

  各位老師你們好!今天我要為大家講的課題是

  首先,我對(duì)本節(jié)教材進(jìn)行一些分析:

  一、教材分析(說教材):

  1. 教材所處的地位和作用:

  本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊(cè)第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

  2. 教育教學(xué)目標(biāo):

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

 。1)知識(shí)目標(biāo): (2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語言表達(dá)能力以及通過師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,(3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。

  3. 重點(diǎn),難點(diǎn)以及確定依據(jù):

  本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn): 通過 突出重點(diǎn)

  難點(diǎn): 通過 突破難點(diǎn)

  關(guān)鍵:

  下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>

  二、教學(xué)策略(說教法)

  1. 教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法。基于本節(jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。

  2. 教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號(hào)法,問答式,課堂討論法。在采用問答法時(shí),特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動(dòng)力。

  3. 學(xué)情分析:(說學(xué)法)

  我們常說:“現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

  (1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)

  生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

 。2) 知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí) ,許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙, 知識(shí) 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。

  (3) 動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動(dòng)力

  最后我來具體談?wù)勥@一堂課的教學(xué)過程:

  4. 教學(xué)程序及設(shè)想:

 。1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問題情境中。

 。2)由實(shí)例得出本課新的知識(shí)點(diǎn)

 。3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。

 。4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識(shí)與解題思想方法。

 。5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的'內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

  (6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。

 。7)板書

 。8)布置作業(yè)。 針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,

  教學(xué)程序:

  課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分

高中數(shù)學(xué)說課稿11

  一、教材分析

  本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)資料,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,并且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。所以,正弦定理和余弦定理的知識(shí)十分重要。

  根據(jù)上述教材資料分析,研究到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

  本事目標(biāo):引導(dǎo)學(xué)生經(jīng)過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維本事,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,經(jīng)過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和進(jìn)取性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

  教學(xué)重點(diǎn):正弦定理的資料,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)確定解的個(gè)數(shù)。

  二、教法

  根據(jù)教材的資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,進(jìn)取探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的本事線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過例題和練習(xí)來突破難點(diǎn)

  三、學(xué)法:

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、團(tuán)體等多種解難釋疑的嘗試活動(dòng),將自我所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維本事,構(gòu)成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

  四、教學(xué)過程

  第一:創(chuàng)設(shè)情景,大概用2分鐘

  第二:實(shí)踐探究,構(gòu)成概念,大約用25分鐘

  第三:應(yīng)用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的教師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今日的學(xué)習(xí)課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

  3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

  在三角形中,角與所對(duì)的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵(lì)學(xué)生經(jīng)過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識(shí)能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

 。ㄋ模w納總結(jié),簡單應(yīng)用

  1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

  2.正弦定理的資料,討論能夠解決哪幾類有關(guān)三角形的問題。

  3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自我參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來解三角形。

  2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (六)課堂練習(xí),提高鞏固

  1.在△ABC中,已知下列條件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,教師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

  (七)小結(jié)反思,提高認(rèn)識(shí)

  經(jīng)過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

  1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

 。◤膶(shí)際問題出發(fā),經(jīng)過猜想、實(shí)驗(yàn)、歸納等思維方法,最終得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著結(jié)論,并且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生進(jìn)取性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

 。ò耍┤蝿(wù)后延,自主探究

  如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)資料,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)資料。

高中數(shù)學(xué)說課稿12

尊敬的各位評(píng)委、老師們:

  大家好!

  今天我說課的內(nèi)容是《函數(shù)的概念》,選自人教版高中數(shù)學(xué)必修一第一章第二節(jié)。下面介紹我對(duì)本節(jié)課的設(shè)計(jì)和構(gòu)思,請(qǐng)您多提寶貴意見。

  我的說課有以下六個(gè)部分:

  一、背景分析

  1、學(xué)習(xí)任務(wù)分析

  本節(jié)課是必修1第1章第2節(jié)的內(nèi)容,是函數(shù)這一章的起始課,它上承集合,下引性質(zhì),與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容聯(lián)系密切,是學(xué)好后繼知識(shí)的基礎(chǔ)和工具,所以本節(jié)課在數(shù)學(xué)教學(xué)中的地位和作用是至關(guān)重要的。

  2、學(xué)情分析

  學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,初步具備了學(xué)習(xí)函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學(xué)說到高中階段的對(duì)應(yīng)說很抽象,不易理解。

  另外,通過對(duì)集合的學(xué)習(xí),學(xué)生基本適應(yīng)了有效教學(xué)的課堂模式,初步具備了小組合作、自主探究的學(xué)習(xí)能力。

  基于以上的分析,我認(rèn)為本節(jié)課的教學(xué)重點(diǎn)為:函數(shù)的概念以及構(gòu)成函數(shù)的三要素;

  教學(xué)難點(diǎn)為:函數(shù)概念的形成及理解。

  二、教學(xué)目標(biāo)設(shè)計(jì)

  根據(jù)《課程標(biāo)準(zhǔn)》對(duì)本節(jié)課的學(xué)習(xí)要求,結(jié)合本班學(xué)生的情況,故而確立本節(jié)課的教學(xué)目標(biāo)。

  1、知識(shí)與技能(方面)

  通過豐富的實(shí)例,讓學(xué)生

 、倭私夂瘮(shù)是非空數(shù)集到非空數(shù)集的一個(gè)對(duì)應(yīng);

  ②了解構(gòu)成函數(shù)的三要素;

  ③理解函數(shù)概念的本質(zhì);

  ④理解f(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;

 、輹(huì)求一些簡單函數(shù)的定義域。

  2、過程與方法(方面)

  在教學(xué)過程中,結(jié)合生活中的實(shí)例,通過師生互動(dòng)、生生互動(dòng)培養(yǎng)學(xué)生分析推理、歸納總結(jié)和表達(dá)問題的能力,在函數(shù)概念的構(gòu)建過程中體會(huì)類比、歸納、猜想等數(shù)學(xué)思想方法。

  3、情感、態(tài)度與價(jià)值觀(方面)

  讓學(xué)生充分體驗(yàn)函數(shù)概念的形成過程,參與函數(shù)定義域的求解過程以及函數(shù)的求值過程,使學(xué)生感受到數(shù)學(xué)的抽象美與簡潔美。

  三、課堂結(jié)構(gòu)設(shè)計(jì)

  為充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的探究,我使用有效教學(xué)的課堂模式,課前學(xué)生通過結(jié)構(gòu)化預(yù)習(xí),完成問題生成單,課中采用師生互動(dòng)、小組討論、學(xué)生展寫、展講例題,教師點(diǎn)評(píng)的方式完成問題解決單,課后完成問題拓展單,課堂結(jié)構(gòu)包含:

  復(fù)習(xí)舊知,引出課題(約2分鐘)創(chuàng)設(shè)情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識(shí)——小組討論,展寫例題(約8分鐘)小組展講,教師點(diǎn)評(píng)(約10分鐘)總結(jié)反思,知識(shí)升華(約2分鐘)(最后)布置作業(yè),拓展練習(xí)。

  四、教學(xué)媒體設(shè)計(jì)

  教學(xué)中利用投影與黑板相結(jié)合的形式,利用投影直觀、生動(dòng)地展示實(shí)例,并能增加課堂容量;利用黑板列舉本節(jié)重要內(nèi)容,使學(xué)生對(duì)所學(xué)內(nèi)容有一整體認(rèn)識(shí),并讓學(xué)生利用黑板展寫、展講例題,有問題及時(shí)發(fā)現(xiàn)及時(shí)解決。

  五、教學(xué)過程設(shè)計(jì)

  本節(jié)課圍繞問題的解決與重難點(diǎn)的突破,設(shè)計(jì)了下面的教學(xué)過程。

  整個(gè)教學(xué)過程按四個(gè)環(huán)節(jié)展開:

  首先,在第一環(huán)節(jié)——復(fù)習(xí)舊知,引出課題,先由兩個(gè)問題導(dǎo)入新課

  ①初中時(shí)函數(shù)是如何定義的?

  ②y=1是函數(shù)嗎?

  [設(shè)計(jì)意圖]:學(xué)生通過對(duì)這兩個(gè)問題的思考與討論,發(fā)現(xiàn)利用初中的定義很難回答第②個(gè)問題,從而激起他們的好奇心:高中階段的函數(shù)概念會(huì)是什么?激發(fā)他們學(xué)習(xí)本節(jié)課的強(qiáng)烈愿望和情感,使他們處于積極主動(dòng)的探究狀態(tài),大大提高了課堂效率。

  從學(xué)生的心理狀態(tài)與認(rèn)知規(guī)律出發(fā),教學(xué)過程自然過渡到第二個(gè)環(huán)節(jié)——函數(shù)概念的形成。

  由于高中階段的函數(shù)概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學(xué)生能看見能感知的生活中的3個(gè)實(shí)例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數(shù)的概念,此過程我稱之為“創(chuàng)設(shè)情境,形成概念”。

  對(duì)于這3個(gè)實(shí)例,我分別預(yù)設(shè)一個(gè)問題讓學(xué)生思考與體會(huì)。

  問題1:從炮彈發(fā)射到落地的0-26s時(shí)間內(nèi),集合A是否存在某一時(shí)間t,在B中沒有高度h與之對(duì)應(yīng)?是否有兩個(gè)或多個(gè)高度與之相對(duì)應(yīng)?

  問題2:從1979—20xx年,集合A是否存在某一時(shí)間t,在B中沒有面積S與之對(duì)應(yīng)?是否有兩個(gè)或多個(gè)面積與它相對(duì)應(yīng)嗎?

  問題3:從1991—20xx年間,集合A中是否存在某一時(shí)間t,在B中沒恩格爾系數(shù)與之對(duì)應(yīng)?是否會(huì)有兩個(gè)或多個(gè)恩格爾系數(shù)與對(duì)應(yīng)?

  [設(shè)計(jì)意圖]:通過循序漸進(jìn)地提問,變教為誘,以誘達(dá)思,引導(dǎo)學(xué)生根據(jù)問題總結(jié)3個(gè)實(shí)例的各自特點(diǎn),并綜合各自特點(diǎn),歸納它們的公共特征,著重向?qū)W生滲透集合與對(duì)應(yīng)的觀點(diǎn),這樣,再讓學(xué)生經(jīng)歷由具體到抽象的概括過程,用集合、對(duì)應(yīng)的語言來描述函數(shù)時(shí)就顯得水到渠成,難點(diǎn)得以突破。

  函數(shù)的概念既已形成,本節(jié)課自然進(jìn)入了第3個(gè)環(huán)節(jié)——剖析概念,理解概念。

  函數(shù)概念的理解是本節(jié)課的重點(diǎn)也是難點(diǎn),概念本身比較抽象,學(xué)生在理解上可能把握不準(zhǔn)確,所以我分兩個(gè)步驟來進(jìn)行剖析,由具體到抽象,螺旋上升。

  首先,在學(xué)生熟讀熟背函數(shù)概念的基礎(chǔ)上,我設(shè)計(jì)一個(gè)學(xué)生活動(dòng),讓學(xué)生充分參與,在參與中體會(huì)學(xué)習(xí)的快樂。

  我利用多媒體制作一個(gè)表格,請(qǐng)學(xué)號(hào)為01—05的同學(xué)填寫自己上次的數(shù)學(xué)考試成績,并提出3個(gè)問題:

  問題1:若學(xué)號(hào)構(gòu)成集合A,成績構(gòu)成集合B,對(duì)應(yīng)關(guān)系f:上次數(shù)學(xué)考試成績,那么由A到B能否構(gòu)成函數(shù)?

  問題2:若將問題1中“學(xué)號(hào)”改為“01—05的學(xué)生”,其余不變,那么由A到B能否構(gòu)成函數(shù)?

  問題3:若學(xué)號(hào)04的學(xué)生上次考試因病缺考,無成績,那么對(duì)問題1學(xué)號(hào)與成績能否構(gòu)成函數(shù)?

  [設(shè)計(jì)意圖]:通過層層提問,層層回答,讓學(xué)生對(duì)概念中關(guān)鍵詞的把握更為準(zhǔn)確,對(duì)函數(shù)概念的理解更為具體,為總結(jié)歸納函數(shù)概念的本質(zhì)特征打下基礎(chǔ)。

  其次,我通過幻燈片的形式展示幾組數(shù)集的對(duì)應(yīng)關(guān)系,讓學(xué)生分析討論哪些對(duì)應(yīng)關(guān)系能構(gòu)成函數(shù),在學(xué)生深刻認(rèn)識(shí)到函數(shù)是非空數(shù)集到非空數(shù)集的一對(duì)一或多對(duì)一的對(duì)應(yīng)關(guān)系,并能準(zhǔn)確把握概念中的關(guān)鍵詞后,再著重強(qiáng)強(qiáng)在這兩種對(duì)應(yīng)關(guān)系中,何為定義域,何為值域,值域和集合B有什么關(guān)系,強(qiáng)調(diào)函數(shù)的三要素,得出兩函數(shù)相等的條件。

  至此,本節(jié)課的第三個(gè)環(huán)節(jié)已經(jīng)完成,對(duì)于區(qū)間的概念,學(xué)生通過預(yù)習(xí)能夠理解課堂上不再多講,僅在多媒體上進(jìn)行展示,但會(huì)在后面例題的使用中指出注意事項(xiàng)。

  在本節(jié)課的第四個(gè)環(huán)節(jié)——例題分析中,我重點(diǎn)以例題的形式考查函數(shù)的有關(guān)概念問題,簡單函數(shù)的定義域問題以及函數(shù)的求值問題,至于分段函數(shù)、復(fù)合函數(shù)的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學(xué)生討論、展寫、展講、學(xué)生互評(píng)、教師點(diǎn)評(píng)的方式完成知識(shí)的鞏固,讓學(xué)生成為課堂的主人。

  最后,通過

  ——總結(jié)點(diǎn)評(píng),完善知識(shí)體系

  ——課堂練習(xí),鞏固知識(shí)掌握

  ——布置作業(yè),沉淀教學(xué)成果

  六、教學(xué)評(píng)價(jià)設(shè)計(jì)

  教學(xué)是動(dòng)態(tài)生成的過程,課堂上必然會(huì)有難以預(yù)料的事情發(fā)生,具體的教學(xué)過程還應(yīng)根據(jù)實(shí)際情況加以調(diào)整。

  最后,引用赫爾巴特的一句名言結(jié)束我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術(shù)的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。

  謝謝大家!

高中數(shù)學(xué)說課稿13

  各位評(píng)委老師你們好,我是第?號(hào)選手。我今天說課的題目是《 》,我將從教材分析,教法,學(xué)法,教學(xué)程序,等幾個(gè)方面進(jìn)行我的說課。

  一,教材分析

  這部分我主要從3各方面闡述

  1, 教材的地位和作用

  《 》是北師大版必修?第?章第?節(jié)的內(nèi)容,在此之前,同學(xué)們已經(jīng)學(xué)習(xí)了、,這些對(duì)本節(jié)課的學(xué)習(xí)有一定的鋪墊作用,同是學(xué)好本節(jié)的內(nèi)容不僅加深前面所學(xué)習(xí)的知識(shí),而且為后面我們將要學(xué)習(xí)的?知識(shí)打好基礎(chǔ),?所以說本節(jié)課的學(xué)習(xí)在整個(gè)高中數(shù)學(xué)學(xué)習(xí)過程中占有重要地位!

  2.根據(jù)教學(xué)大綱的規(guī)定,教學(xué)內(nèi)容的要求,教學(xué)對(duì)象的實(shí)情我確定了如下3維教學(xué)目標(biāo)(i)知識(shí)目標(biāo):

  II能力目標(biāo);初步培養(yǎng)學(xué)生歸納,抽象,概括的思維能力。

  訓(xùn)練學(xué)生認(rèn)識(shí)問題,分析問題,解決問題的能力

  III情感目標(biāo);通過學(xué)生的探索,史學(xué)生體會(huì)數(shù)學(xué)就在我們身邊,讓學(xué)生發(fā)現(xiàn)生活的數(shù)學(xué),培養(yǎng)不斷超越的創(chuàng)新品質(zhì),提高數(shù)學(xué)素養(yǎng)。

  3, 結(jié)合以上分析以及高一學(xué)生的人知水平我確定啦本節(jié)課的重難點(diǎn)

  教學(xué)重點(diǎn):

  教學(xué)難點(diǎn);

  二,教法

  教學(xué)方法是完成教學(xué)任務(wù)的手段,恰當(dāng)?shù)膶W(xué)者教學(xué)方法至關(guān)重要,根據(jù)本節(jié)課的教學(xué)內(nèi)容,考慮到高一學(xué)生已經(jīng)初步具有一定的探索能力,并喜歡挑戰(zhàn)問題的實(shí)際情況,為啦更有效的突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的知道思想。我主要采用 問題探究法 引導(dǎo)發(fā)現(xiàn)發(fā),案例教學(xué)法,講授法,在教學(xué)過程中精心設(shè)計(jì)帶有啟發(fā)性和思考性的問題,滿足學(xué)生探索的欲望,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,激發(fā)來自學(xué)生主體最有利的動(dòng)力。并運(yùn)用多媒體課件的形式,更形象直觀,提高教學(xué)效果的同時(shí)加大啦課堂密度!

  學(xué)法

  根據(jù)學(xué)生的年齡特征,運(yùn)用訊息漸進(jìn),逐步升入,理論聯(lián)系實(shí)際的規(guī)律,讓學(xué)生從問題中質(zhì)疑,嘗試,歸納,總結(jié),運(yùn)用。培養(yǎng)學(xué)生發(fā)現(xiàn)問題,研究問題,分析問題的能力。自主參與知識(shí)的發(fā)生,發(fā)展,形成過程,完成從感性認(rèn)識(shí) 到理性思維的質(zhì)的飛躍,史學(xué)生在知識(shí)和能力方面都有所提高。

  三,教學(xué)程序

  1, 創(chuàng)設(shè)情境,提出問題

  讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),學(xué)生試著利用以前的知識(shí)經(jīng)驗(yàn),同化索引出當(dāng)前學(xué)習(xí)的新知識(shí),激發(fā)學(xué)習(xí)的興趣和動(dòng)機(jī)。

  2, 引導(dǎo)探究,直奔主題。(揭示概念)

  參用小組合作的方式,各小組派代表發(fā)表成果,教師作為教學(xué)的引導(dǎo)者,給予肯定的評(píng)價(jià),并給出一定的指導(dǎo),最后師生共同得出??!教師引導(dǎo)學(xué)生進(jìn)一步學(xué)習(xí)。整個(gè)過程充分突出學(xué)生的主體地位,培養(yǎng)學(xué)生合作探究的能力,激發(fā)興趣,更讓學(xué)生在思考學(xué)術(shù)問題以及解決數(shù)學(xué)問題的思想方法上有更深的交流。

  3, 自我嘗試,初步應(yīng)用

  在講解是,不僅在于怎樣接,更在于為什么這樣解,及時(shí)引導(dǎo)學(xué)生探究運(yùn)用知識(shí),解決問題的方法,及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于培養(yǎng)學(xué)生的思維能力。 4 .當(dāng)堂訓(xùn)練,鞏固深化(反饋矯正)

  通過學(xué)生的主體參與,讓學(xué)生鞏固所學(xué)的知識(shí),實(shí)現(xiàn)對(duì)知識(shí)再認(rèn)識(shí)的以及在數(shù)學(xué)解題思想方法層面上進(jìn)一步升華

  5,歸納小結(jié),回顧反思

  從知識(shí),方法,經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。讓學(xué)生思考本節(jié)課學(xué)到啦那些知識(shí),還有那些疑問。本節(jié)課最大的體驗(yàn)。本節(jié)課你學(xué)會(huì)那些技能。

  知識(shí)性的內(nèi)容小結(jié),可以把課堂教學(xué)傳授的知識(shí)盡快轉(zhuǎn)化為學(xué)生的素養(yǎng),數(shù)學(xué)思想發(fā)放的小結(jié),可以使學(xué)生更深刻地理解數(shù)學(xué)思想發(fā)放在解題中的地位和作用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

  ,6,變式延伸,布置作業(yè)

  必做題,對(duì)本屆課學(xué)生知識(shí)水平的反饋。選作題,對(duì)本節(jié)課知識(shí)內(nèi)容的延伸。使不同層次學(xué)生都可以收獲成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,讓每個(gè)學(xué)生在原有的基礎(chǔ)上有所發(fā)展。做到人人學(xué)數(shù)學(xué),人人學(xué)不同的數(shù)學(xué)。

  7板書設(shè)計(jì)

  力圖簡潔,形象,直觀,概括以便學(xué)生易于掌握。

  四,教學(xué)評(píng)價(jià)

  學(xué)生學(xué)習(xí)結(jié)果評(píng)價(jià)當(dāng)然重要,但是學(xué)習(xí)過程的評(píng)價(jià)更加重要。本節(jié)課中高度重視學(xué)生學(xué)習(xí)過程中的參與度,自信心,團(tuán)隊(duì)精神,合作意識(shí),獨(dú)立思考習(xí)慣的養(yǎng)成。數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感,,學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計(jì)可以讓更多學(xué)生主動(dòng)參與,師生對(duì)話可以實(shí)現(xiàn)師生合作,適度的研討可以駐京生生交流,知識(shí)的生成和問題的解決可以讓學(xué)生感受到成功的喜悅?b密的思考可以培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣,讓學(xué)生在教室評(píng)價(jià),學(xué)生評(píng)價(jià)以及自我評(píng)價(jià)的過程中體驗(yàn)知識(shí)的積累,探索能力的長進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ),

  以上就是我的說課內(nèi)容。不當(dāng)之處,希望各位老師給予指正。謝謝各位評(píng)委老師!你們幸苦啦!

高中數(shù)學(xué)說課稿14

  各位評(píng)委老師,大家好!

  我是本科數(shù)學(xué)**號(hào)選手,今天我要進(jìn)行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時(shí)《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評(píng)價(jià)五個(gè)方面來陳述我對(duì)本節(jié)課的設(shè)計(jì)方案。懇請(qǐng)?jiān)谧膶<以u(píng)委批評(píng)指正。

  一、教材分析

  1、 教材的地位和作用

 。1)本節(jié)課主要對(duì)函數(shù)單調(diào)性的學(xué)習(xí);

 。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時(shí)又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

  (3)它是歷年高考的熱點(diǎn)、難點(diǎn)問題

 。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問題就刪掉)

  2、 教材重、難點(diǎn)

  重點(diǎn):函數(shù)單調(diào)性的定義

  難點(diǎn):函數(shù)單調(diào)性的證明

  重難點(diǎn)突破:在學(xué)生已有知識(shí)的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實(shí)現(xiàn)重難點(diǎn)突破。(這個(gè)必須要有)

  3.學(xué)情分析

  高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢(shì),所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢(shì);由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng).

  二、教學(xué)目標(biāo)

  知識(shí)目標(biāo):

 。1)函數(shù)單調(diào)性的定義

  (2)函數(shù)單調(diào)性的證明

  能力目標(biāo):

  培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

  情感目標(biāo):

  培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)

 。ㄟ@樣的教學(xué)目標(biāo)設(shè)計(jì)更注重教學(xué)過程和情感體驗(yàn),立足教學(xué)目標(biāo)多元化)

  三、教法學(xué)法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當(dāng)才會(huì)有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評(píng)價(jià)法

  2、學(xué)法分析

  “授人以魚,不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

  (前三部分用時(shí)控制在三分鐘以內(nèi),可適當(dāng)刪減)

  四、教學(xué)過程

  1、以舊引新,導(dǎo)入新知

  通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點(diǎn),總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個(gè)曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢(shì),這樣看起來更自然)

  2、創(chuàng)設(shè)問題,探索新知

  緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個(gè)函數(shù)的單調(diào)性。

  讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。

  讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。

  3、 例題講解,學(xué)以致用

  例1主要是對(duì)函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過互評(píng)來糾正答案,檢查學(xué)生對(duì)函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗(yàn)學(xué)生的學(xué)習(xí)效果。

  例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問題,這一例題要采用教師板演的方式,來對(duì)例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺(tái)板演,其他同學(xué)在下面自行完成,并通過自評(píng)、互評(píng)檢查證明步驟。

  4、歸納小結(jié)

  本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)。

  5、作業(yè)布置

  為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1.3A組1、2、3 ,二組 習(xí)題1.3A組2、3、B組1、2

  6、板書設(shè)計(jì)

  我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點(diǎn),讓學(xué)生一目了然。

  (這部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動(dòng))

  五、教學(xué)評(píng)價(jià)

  本節(jié)課是在學(xué)生已有知識(shí)的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過學(xué)生的自評(píng)、互評(píng),讓內(nèi)部動(dòng)機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。

高中數(shù)學(xué)說課稿15

  各位老師:

  大家好!我叫周婷婷,來自湖南科技大學(xué)。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教A版必修3第一章第一節(jié),課時(shí)安排為兩個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析等五大方面來闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  現(xiàn)代社會(huì)是一個(gè)信息技術(shù)發(fā)展很快的社會(huì),算法進(jìn)入高中數(shù)學(xué)正是反映了時(shí)代的需要,它是當(dāng)今社會(huì)必備的基礎(chǔ)知識(shí),算法的學(xué)習(xí)是使用計(jì)算機(jī)處理問題前的一個(gè)必要的步驟,它可以讓學(xué)生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實(shí)現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學(xué)習(xí)十分有利于提高學(xué)生的邏輯思維能力,培養(yǎng)學(xué)生的理性精神和實(shí)踐能力。

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):初步理解算法的定義,體會(huì)算法思想,能夠用自然語言描述算法難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。

  二、教學(xué)目標(biāo)分析

  1.知識(shí)目標(biāo):了解算法的含義,體會(huì)算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應(yīng)滿足的要求。

  2.能力目標(biāo):讓學(xué)生感悟人們認(rèn)識(shí)事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學(xué)生的觀察能力,表達(dá)能力和邏輯思維能力。

  3.情感目標(biāo):對(duì)計(jì)算機(jī)的算法語言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)到計(jì)算機(jī)是人類征服自然的一有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。

  三、教學(xué)方法分析

  采用"問題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動(dòng)發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學(xué)生的探究論證、邏輯思維能力。

  四、學(xué)情分析

  算法這部分的使用性很強(qiáng),與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學(xué)生的學(xué)習(xí)興趣。在教師的引導(dǎo)下,通過多媒體輔助教學(xué),學(xué)生比較容易掌握本節(jié)課的內(nèi)容。

  五、教學(xué)過程分析

  1.創(chuàng)設(shè)情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學(xué)家朱世杰的數(shù)學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現(xiàn)了中國古代數(shù)學(xué)與現(xiàn)代計(jì)算機(jī)科學(xué)的聯(lián)系,它們的基礎(chǔ)都是"算法".

  「設(shè)計(jì)意圖」是為了充分挖掘章頭圖的教學(xué)價(jià)值,體現(xiàn)

  1)算法概念的由來;

  2)我們將要學(xué)習(xí)的算法與計(jì)算機(jī)有關(guān);

  3)展示中國古代數(shù)學(xué)的成就;

  4)激發(fā)學(xué)生學(xué)習(xí)算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)

  2.引入新課:在這一環(huán)節(jié)我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導(dǎo)他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導(dǎo)學(xué)生關(guān)注更具一般性解法,形成解法向算法過渡的準(zhǔn)備,為建立算法概念打下基礎(chǔ)。緊接著在此基礎(chǔ)上進(jìn)一步復(fù)習(xí)回顧解一般的二元一次方程組的步驟,引導(dǎo)學(xué)生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數(shù)據(jù),體驗(yàn)計(jì)算機(jī)直接給出方程組的解。目的是讓學(xué)生明白算法是用來解決某一類問題的,從而提高學(xué)生對(duì)算法的普遍適用性的認(rèn)識(shí),為建立算法的概念做好鋪墊。

  之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語言來表達(dá)算法的涵義?這里讓學(xué)生們根據(jù)剛剛的探索交流、思考并回答,然后老師進(jìn)行歸納,得出算法的基本概念,并幫助學(xué)生認(rèn)識(shí)算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過程中來,體會(huì)算法思想。(約8分鐘)

  3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應(yīng)用到實(shí)際解決問題中去,而不只是單純的對(duì)數(shù)學(xué)思想的領(lǐng)悟。

  這兩道例題均選自課本的例1和例2.

  例1是讓我們?cè)O(shè)定一個(gè)程序以判斷一個(gè)數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學(xué)習(xí)的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導(dǎo)學(xué)生們回顧一下質(zhì)數(shù)應(yīng)滿足的條件,然后再根據(jù)這個(gè)來探索解題步驟。通過例1讓學(xué)生認(rèn)識(shí)到求解結(jié)構(gòu)中存在"重復(fù)".為導(dǎo)出一般問題的算法創(chuàng)造條件,也為學(xué)習(xí)算法的自然語言表示提供前提。告訴學(xué)生們本算法就是用自然語言的形式描述的。并且設(shè)計(jì)算法一定要做到以下要求:

  (1)寫出的算法必須能解決一類問題,并且能夠重復(fù)使用。

 。2)要使算法盡量簡單、步驟盡量少。

 。3)要保證算法正確,且計(jì)算機(jī)能夠執(zhí)行。

  在例1的基礎(chǔ)上我們繼續(xù)研究例2,例2是要求我們?cè)O(shè)計(jì)一個(gè)利用二分法來求解方程的近似根的程序。我們首先要對(duì)算法作分析,回顧用二分法求解方程近似根的過程,然后設(shè)計(jì)出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點(diǎn)。因此通過例2可以讓學(xué)生進(jìn)一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會(huì)算法的思想,體會(huì)算法的的特征。同時(shí)也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達(dá)水平。另外,借助例題加強(qiáng)學(xué)生對(duì)算法概念的理解,體會(huì)算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點(diǎn),算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

  4.課堂小結(jié):

 。1)算法的概念和算法的基本特征

 。2)算法的描述方法,算法可以用自然語言描述。

  (3)能利用算法的思想和方法解決實(shí)際問題,并能寫出一此簡單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點(diǎn),對(duì)所學(xué)知識(shí)有一個(gè)系統(tǒng)整體的認(rèn)識(shí)。(約6分鐘)

  5.布置作業(yè):課本練習(xí)1、2題

  課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對(duì)作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)的說課稿11-04

高中數(shù)學(xué)《集合》說課稿10-31

高中數(shù)學(xué)的說課稿范文04-29

高中數(shù)學(xué)集合說課稿11-12

高中數(shù)學(xué)實(shí)驗(yàn)說課稿11-26

高中數(shù)學(xué)必修說課稿11-25

高中數(shù)學(xué)面試說課稿11-18

高中數(shù)學(xué)函數(shù)的說課稿11-17

高中數(shù)學(xué)的優(yōu)秀說課稿12-04

高中數(shù)學(xué)全套說課稿12-05