淺談高中數(shù)學(xué)幾何的方法
每次和同學(xué)們談及高考數(shù)學(xué),大家似乎都有同感:高考數(shù)學(xué)難,解析幾何又是難中之難。其實(shí)不然,解析幾何題目自有路徑可循,方法可依。只要經(jīng)過認(rèn)真的準(zhǔn)備和正確的點(diǎn)撥,完全可以讓高考數(shù)學(xué)的解析幾何壓軸題變成讓同學(xué)們都很有信心的中等題目。
解析幾何高考的命題趨勢:
(1)題型穩(wěn)定:近幾年來高考解析幾何試題一直穩(wěn)定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,分值約為30分左右,占總分值的20%左右。
(2)整體平衡,重點(diǎn)突出:《考試說明》中解析幾何部分原有33個(gè)知識(shí)點(diǎn),現(xiàn)縮為19個(gè)知識(shí)點(diǎn),一般考查的知識(shí)點(diǎn)超過50%,其中對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒有遺漏,通過對(duì)知識(shí)的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn),對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí),考查時(shí)保證較高的比例并保持必要深度。
近四年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:
、偾笄方程(類型確定、類型未定);
、谥本與圓錐曲線的交點(diǎn)問題(含切線問題);
、叟c曲線有關(guān)的最(極)值問題;
、芘c曲線有關(guān)的幾何證明(對(duì)稱性或求對(duì)稱曲線、平行、垂直);
、萏角笄方程中幾何量及參數(shù)間的數(shù)量特征;
(3)能力立意,滲透數(shù)學(xué)思想:如2000年第(22)題,以梯形為背景,將雙曲線的概念、性質(zhì)與坐標(biāo)法、定比分點(diǎn)的坐標(biāo)公式、離心率等知識(shí)融為一體,有很強(qiáng)的綜合性。一些雖是常見的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準(zhǔn)確的得到答案。
(4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。
直線與圓內(nèi)容的主要考查兩部分:
(1)以選擇題題型考查本章的基本概念和性質(zhì),此類題一般難度不大,但每年必考,考查內(nèi)容主要有以下幾類:
、倥c本章概念(傾斜角、斜率、夾角、距離、平行與垂直、線性規(guī)劃等)有關(guān)的問題;
、趯(duì)稱問題(包括關(guān)于點(diǎn)對(duì)稱,關(guān)于直線對(duì)稱)要熟記解法;
、叟c圓的位置有關(guān)的問題,其常規(guī)方法是研究圓心到直線的距離.
以及其他“標(biāo)準(zhǔn)件”類型的基礎(chǔ)題。
(2)以解答題考查直線與圓錐曲線的位置關(guān)系,此類題綜合性比較強(qiáng),難度也較大。
預(yù)計(jì)在今后一、二年內(nèi),高考對(duì)本章的考查會(huì)保持相對(duì)穩(wěn)定,即在題型、題量、難度、重點(diǎn)考查內(nèi)容等方面不會(huì)有太大的變化。
相比較而言,圓錐曲線內(nèi)容是平面解析幾何的核心內(nèi)容,因而是高考重點(diǎn)考查的內(nèi)容,在每年的高考試卷中一般有2~3道客觀題和一道解答題,難度上易、中、難三檔題都有,主要考查的內(nèi)容是圓錐曲線的概念和性質(zhì),直線與圓錐的位置關(guān)系等。
近十年高考試題看大致有以下三類:
(1)考查圓錐曲線的概念與性質(zhì);
(2)求曲線方程和求軌跡;
(3)關(guān)于直線與圓及圓錐曲線的.位置關(guān)系的問題。
選擇題主要以橢圓、雙曲線為考查對(duì)象,填空題以拋物線為考查對(duì)象,解答題以考查直線與圓錐曲線的位置關(guān)系為主,對(duì)于求曲線方程和求軌跡的題,高考一般不給出圖形,以考察學(xué)生的想象能力、分析問題的能力,從而體現(xiàn)解析幾何的基本思想和方法,圓一般不單獨(dú)考查,總是與直線、圓錐曲線相結(jié)合的綜合型考題,等軸雙曲線基本不出題,坐標(biāo)軸平移或平移化簡方程一般不出解答題,大多是以選擇題形式出現(xiàn).解析幾何的解答題一般為難題,近兩年都考查了解析幾何的基本方法——坐標(biāo)法以及二次曲線性質(zhì)的運(yùn)用的命題趨向要引起我們的重視。
請(qǐng)同學(xué)們注意圓錐曲線的定義在解題中的應(yīng)用,注意解析幾何所研究的問題背景平面幾何的一些性質(zhì)。從近兩年的試題看,解析幾何題有前移的趨勢,這就要求考生在基本概念、基本方法、基本技能上多下功夫。參數(shù)方程是研究曲線的輔助工具。高考試題中,涉及較多的是參數(shù)方程與普通方程互化及等價(jià)變換的數(shù)學(xué)思想方法。
【淺談高中數(shù)學(xué)幾何的方法】相關(guān)文章:
淺談網(wǎng)賺論壇付費(fèi)VIP價(jià)值幾何11-13
淺談高中數(shù)學(xué)教育目的與方法探究分析論文08-20
淺談九年級(jí)數(shù)學(xué)幾何定理的運(yùn)用11-20
淺談小學(xué)數(shù)學(xué)幾何圖形概念教學(xué)策略11-25
畫好組合幾何體素描的技巧與方法10-04
初中數(shù)學(xué)中的幾何教學(xué)方法論文09-08
淺談初中數(shù)學(xué)與高中數(shù)學(xué)的差異11-29
淺談高中數(shù)學(xué)高效課堂的構(gòu)建策略11-20
淺談公文寫作的修改方法10-10