久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學說課稿

時間:2021-08-15 08:51:16 高中說課稿 我要投稿

有關(guān)高中數(shù)學說課稿范文集合9篇

  作為一名無私奉獻的老師,時常需要用到說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。怎么樣才能寫出優(yōu)秀的說課稿呢?以下是小編收集整理的高中數(shù)學說課稿9篇,歡迎大家分享。

有關(guān)高中數(shù)學說課稿范文集合9篇

高中數(shù)學說課稿 篇1

  各位老師:

  大家好!

  我叫***,來自**。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1.教材所處的地位和作用

  古典概型是一種特殊的數(shù)學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質(zhì),又是以后學習條件概率的基礎(chǔ),起到承前啟后的作用。

  2.教學的重點和難點

  重點:理解古典概型及其概率計算公式。

  難點:古典概型的判斷及把一些實際問題轉(zhuǎn)化成古典概型。

  二、教學目標分析

  1.知識與技能目標

 。1)通過試驗理解基本事件的概念和特點

 。2)在數(shù)學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。

  2、過程與方法:

  經(jīng)歷公式的推導過程,體驗由特殊到一般的數(shù)學思想方法。

  3、情感態(tài)度與價值觀:

  (1)用具有現(xiàn)實意義的實例,激發(fā)學生的學習興趣,培養(yǎng)學生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。

 。2)讓學生掌握"理論來源于實踐,并把理論應(yīng)用于實踐"的辨證思想。

  三、教法與學法分析

  1、教法分析:根據(jù)本節(jié)課的特點,采用引導發(fā)現(xiàn)和歸納概括相結(jié)合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學生的學習興趣,調(diào)動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

  2、學法分析:學生在教師創(chuàng)設(shè)的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結(jié)合,體現(xiàn)了學生的主體地位,培養(yǎng)了學生由具體到抽象,由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度。

 、鍎(chuàng)設(shè)情景、引入新課

  在課前,教師布置任務(wù),以小組為單位,完成下面兩個模擬試驗:

  試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個數(shù)學小組至少完成20次(最好是整十數(shù)),最后由代表匯總;

  試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數(shù),要求每個數(shù)學小組至少完成60次(最好是整十數(shù)),最后由代表匯總。

  在課上,學生展示模擬試驗的操作方法和試驗結(jié)果,并與同學交流活動感受,教師最后匯總方法、結(jié)果和感受,并提出兩個問題。

  1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

  不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結(jié)果是頻率,而不是概率。

  2.根據(jù)以前的學習,上述兩個模擬試驗的每個結(jié)果之間都有什么特點?]

  「設(shè)計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養(yǎng)學生運用數(shù)學語言的能力。隨著新問題的提出,激發(fā)了學生的求知欲望,通過觀察對比,培養(yǎng)了學生發(fā)現(xiàn)問題的能力。

  ㈡思考交流、形成概念

  學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關(guān)特點加以說明,加深對新概念的理解。

  [基本事件有如下的兩個特點:

 。1)任何兩個基本事件是互斥的;

 。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「設(shè)計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學生分析問題的能力,同時也教會學生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關(guān)鍵。

  例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?

  先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。

  「設(shè)計意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學生直觀的感受到對象的總數(shù),而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點

  觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:

  讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,教師最后補充說明。

  [經(jīng)概括總結(jié)后得到:

  (1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)

 。2)每個基本事件出現(xiàn)的可能性相等。(等可能性)

  我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

  「設(shè)計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學的化歸思想。啟發(fā)誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。

  ㈢觀察分析、推導方程

  問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?

  教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計算任何事件的概率計算公式:

  「設(shè)計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數(shù)學化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

  提問:

 。1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?

 。2)在使用古典概型的概率公式時,應(yīng)該注意什么?

  「設(shè)計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。

  ㈣例題分析、推廣應(yīng)用

  例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

  學生先思考再回答,教師對學生沒有注意到的關(guān)鍵點加以說明。

  「設(shè)計意圖」讓學生明確決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。鞏固學生對已學知識的掌握。

  例3同時擲兩個骰子,計算:

  (1)一共有多少種不同的結(jié)果?

 。2)其中向上的點數(shù)之和是5的結(jié)果有多少種?

 。3)向上的點數(shù)之和是5的概率是多少?

  先給出問題,再讓學生完成,然后引導學生分析問題,發(fā)現(xiàn)解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數(shù)。

  「設(shè)計意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學生數(shù)學思維情趣,形成學習數(shù)學知識的積極態(tài)度。

  ㈤探究思想、鞏固深化

  問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?

  要求學生觀察對比兩種結(jié)果,找出問題產(chǎn)生的原因。

  「設(shè)計意圖」通過觀察對比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現(xiàn)了學生的主體地位,逐漸養(yǎng)成自主探究能力。

 、昕偨Y(jié)概括、加深理解

  1.基本事件的特點

  2.古典概型的特點

  3.古典概型的概率計算公式

  學生小結(jié)歸納,不足的地方老師補充說明。

  「設(shè)計意圖」使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,并把學過的相關(guān)知識有機地串聯(lián)起來,便于記憶和應(yīng)用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學生的認知更上一層。

 、氩贾米鳂I(yè)

  課本練習1、2、3

  「設(shè)計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對本節(jié)課的理解。

高中數(shù)學說課稿 篇2

  數(shù)學:人教A版必修3第二章第三節(jié)《變量之間的相關(guān)關(guān)系》說課稿各位老師:

  大家好!我叫***,來自**。我說課的題目是《變量之間的相關(guān)關(guān)系》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第三節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1.教材所處的地位和作用

  本章我們所要學習的主要內(nèi)容就是統(tǒng)計,在前面的章節(jié)中我們已經(jīng)對統(tǒng)計的相關(guān)知識作了大致的了解。本節(jié)課我們要繼續(xù)探討的是變量之間的相關(guān)關(guān)系,它為接下來要學習的兩個變量的線性相關(guān)打下基礎(chǔ)。這是一個與現(xiàn)實實際生活聯(lián)系很緊密的知識,在教師的引導下,可使學生認識到在現(xiàn)實世界中存在不能用函數(shù)模型描述的變量關(guān)系,從而體會研究變量之間的相關(guān)關(guān)系的重要性.

  2.教學的重點和難點

  重點:①通過收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)直觀認識變量間的相關(guān)關(guān)系;

  ②利用散點圖直觀認識兩個變量之間的線性關(guān)系;

  難點:①變量之間相關(guān)關(guān)系的理解;②作散點圖和理解兩個變量的正相關(guān)和負相關(guān)

  二、教學目標分析

  1.知識與技能目標

  通過收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)認識變量間的相關(guān)關(guān)系

  2、過程與方法目標:

  明確事物間的相互聯(lián)系.認識現(xiàn)實生活中變量間除了存在確定的關(guān)系外,仍存在大量的非確定性的相關(guān)關(guān)系,并利用散點圖直觀體會這種相關(guān)關(guān)系.

  3、情感態(tài)度與價值觀目標:

  通過對事物之間相關(guān)關(guān)系的了解,讓學生們認識到現(xiàn)實中任何事物都是相互聯(lián)系的辯證法思想。

  三、教學方法與手段分析

  1.教學方法:結(jié)合本節(jié)課的教學內(nèi)容和學生的認知水平,在教法上,我采用“問答探究”式的教學方法,層層深入。充分發(fā)揮教師的主導作用,讓學生真正成為教學活動的主體。

  2。教學手段:通過多媒體輔助教學,充分調(diào)動學生參與課堂教學的主動性與積極性。

  四、教學過程分析

 、鍐栴}引出:

  請同學們?nèi)鐚嵦顚懴卤恚ㄔ诳崭裰写颉啊獭保?/p>

  然后回答如下問題:①“你的數(shù)學成績對你的物理成績有無影響?”②“如果你的數(shù)學成績好,那么你的物理成績也不會太差,如果你的數(shù)學成績差,那么你的物理成績也不會太好!睂δ銇碚f,是這樣嗎?同意這種說法的同學請舉手。

  根據(jù)同學們回答的結(jié)果,讓學生討論:我們可以發(fā)現(xiàn)自己的數(shù)學成績和物理成績存在某種關(guān)系。(似乎就是數(shù)學好的,物理也好;數(shù)學差的,物理也差,但又不全對。)教師總結(jié)如下:

  物理成績和數(shù)學成績是兩個變量,從經(jīng)驗看,由于物理學習要用到比較多的數(shù)學知識和數(shù)學方法。數(shù)學成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還

  有其它因素,如圖所示(幻燈片給出):

  因此,不能通過一個人的數(shù)學成績是多少就準確地斷定他的物理成績能達到多少。但這兩個變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系。如何通過數(shù)學成績的結(jié)果對物理成績進行合理估計有非常重要的現(xiàn)實意義。

  「設(shè)計意圖」通過對身邊事例的分析,引出我們今天將要學習的主要內(nèi)容,由此可以激起學

  生們的學習興趣,為接下來的學習打下良好的基礎(chǔ)。

 、嫣骄啃轮

 、备拍钚纬

  教師提問:“像剛才這種情況在現(xiàn)實生活中是否還有?”學生們思考之后,請幾位同學就提出的問題作出回答。老師就舉出的例子,引導學生作出分析,然后由老師總結(jié)得出相關(guān)關(guān)系的概念。[兩個變量之間的關(guān)系可能是確定的關(guān)系(如:函數(shù)關(guān)系),或非確定性關(guān)系。當自變量取值一定時,因變量也確定,則為確定關(guān)系;當自變量取值一定時,因變量帶有隨機性,這種變量之間的關(guān)系稱為相關(guān)關(guān)系。相關(guān)關(guān)系是一種非確定性關(guān)系。]

  「設(shè)計意圖」從現(xiàn)實生活入手,抓住學生們的注意力,引導學生分析得出概念,讓學生真正參與到概念的形成過程中來。

 、蔡骄烤性相關(guān)關(guān)系和其他相關(guān)關(guān)系

  「課件展示」

  例1在一次對人體脂肪和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題:針對于上述數(shù)據(jù)所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關(guān)系?

  [教師特別向?qū)W生強調(diào)在研究兩個變量之間是否存在某種關(guān)系時,必須從散點圖入手(向?qū)W生介紹什么是散點圖)。并且引導學生從散點圖上可以得出如下規(guī)律:(幻燈片給出)

  ①如果所有的樣本點都落在某一函數(shù)曲線上,那么變量之間具有函數(shù)關(guān)系(確定性關(guān)系);②如果所有的樣本點都落在某一函數(shù)曲線的附近,那么變量之間具有相關(guān)關(guān)系(不確定性關(guān)系);③如果所有的樣本點都落在某一直線附近,那么變量之間具有線性相關(guān)關(guān)系(不確定性關(guān)系)。

  「設(shè)計意圖」通過對這個典型事例的分析,向?qū)W生們介紹什么是散點圖,并總結(jié)出如何從散點圖上判斷變量之間關(guān)系的規(guī)律。

  下面我們用TI圖形計算器作出這兩個變量的散點圖。

  學生實驗:先把數(shù)據(jù)中成對出現(xiàn)的兩個數(shù)分別作為橫坐標、縱坐標,把數(shù)據(jù)輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點圖:

  [引導學生觀察作出的散點圖,體會現(xiàn)實生活中兩個變量之間的關(guān)系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關(guān)關(guān)系。]

  「設(shè)計意圖」通過實驗讓學生們感受散點圖的主要形成過程,并由此引出線性相關(guān)關(guān)系。為后面回歸直線和回歸直線方程的學習做好鋪墊。

  「課件展示」四組數(shù)據(jù),請學生作出散點圖,并觀察每組數(shù)據(jù)的特點。

  根據(jù)四組數(shù)據(jù),學生作出四個散點圖。

  通過學生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關(guān)關(guān)系,正負相關(guān)關(guān)系的概念。

  「設(shè)計意圖」及時鞏固知識,學生通過親自動手作散點圖,并交流討論,進一步加深對散點圖的理解,并由此引出正負相關(guān)關(guān)系的概念,突破難點。

 、缋}講解,深化認識

  「課件展示」

  例2一般說來,一個人的身高越高,他的人就越大,相應(yīng)地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關(guān)系。為了對這個問題進行調(diào)查,我們收集了北京市某中學20xx年高三年級96名學生的身高與右手一拃長的數(shù)據(jù)如下表。

 。1)根據(jù)上表中的數(shù)據(jù),制成散點圖。你能從散點圖中發(fā)現(xiàn)身高與右手一拃長之間的近似關(guān)系嗎?

  (2)如果近似成線性關(guān)系,請畫出一條直線來近似地表示這種線性關(guān)系。

 。3)如果一個學生的身高是188cm,你能估計他的一拃大概有多長嗎?

  「設(shè)計意圖」這個例子很容易激起學生們的學習興趣,由此可達到更好的教學效果。通過對這道題的解答,使對前面知識的認識更加牢固。

 、璺此夹〗Y(jié)、培養(yǎng)能力

 、抛兞块g相關(guān)關(guān)系、線性關(guān)系和正負相關(guān)關(guān)系

 、迫绾巫錾Ⅻc圖

  「設(shè)計意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學生的認知結(jié)構(gòu),把課堂教學傳授的知識較快轉(zhuǎn)化為學生的素質(zhì),也更進一步培養(yǎng)學生的歸納概括能力

 、檎n后作業(yè),自主學習

  習題2.31、2

  [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度,并促使學生進一步鞏固和掌握所學內(nèi)容。

高中數(shù)學說課稿 篇3

  一、教材分析

  1、教材內(nèi)容

  本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡單性質(zhì)的第一課時,該課時主要學習增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

  2、教材所處地位、作用

  函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì)。通過對本節(jié)課的學習,讓學生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題。通過上述活動,加深對函數(shù)本質(zhì)的認識。函數(shù)的單調(diào)性既是學生學過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節(jié)教學過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學思想方法。

  3、教學目標

 。1)知識與技能:使學生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

  的方法;

  (2)過程與方法:從實際生活問題出發(fā),引導學生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學生領(lǐng)會數(shù)形結(jié)合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

 。3)情感態(tài)度價值觀:讓學生體驗數(shù)學的科學功能、符號功能和工具功能,培養(yǎng)學生直覺觀察、探索發(fā)現(xiàn)、科學論證的良好的數(shù)學思維品質(zhì)。

  4、重點與難點

  教學重點(1)函數(shù)單調(diào)性的概念;

 。2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。

  教學難點(1)函數(shù)單調(diào)性的知識形成;

 。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。

  二、教法分析與學法指導

  本節(jié)課是一節(jié)較為抽象的數(shù)學概念課,因此,教法上要注意:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設(shè)情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)了學生求知欲,調(diào)動了學生主體參與的積極性。

  2、在運用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決。

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學生清晰的思維、嚴謹?shù)耐评,并成功地完成書面表達。

  4、采用投影儀、多媒體等現(xiàn)代教學手段,增大教學容量和直觀性。

  在學法上:

  1、讓學生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

  2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的一個飛躍。

  三、 教學過程

  教學

  環(huán)節(jié)

  教 學 過 程

  設(shè) 計 意 圖

  問題

  情境

  (播放中央電視臺天氣預(yù)報的音樂)

  滿足在定義域上的單調(diào)性的討論。

  2、重視學生發(fā)現(xiàn)的過程。如:充分暴露學生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學生認知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。

  3、重視學生的動手實踐過程。通過對定義的解讀、鞏固,讓學生動手去實踐運用定義。

  4、重視課堂問題的設(shè)計。通過對問題的設(shè)計,引導學生解決問題。

高中數(shù)學說課稿 篇4

  各位老師大家好!

  我說課的內(nèi)容是人教 版 A版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。

  (一) 教材分析

  本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。

  (二) 學情分析

  本節(jié)課的 教學 對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上 知道兩點確定一條直線, 知道點與坐標的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學生的認知規(guī)律,還沒有形成自覺地把數(shù)學問題抽象化的能力。所以在教學設(shè)計時需 從 學生的最近發(fā)展區(qū)進行探究學習,盡量讓不同層次的學生都經(jīng)歷概念的形成、 鞏固 和應(yīng)用過程。

  (三)教學目標

  1. 理解直線的傾斜角和斜率的概念, 理解直線的傾斜角的唯一性和斜率的存在性;

  2. 掌握過兩點的直線斜率的計算公式 ;

  3. 通過經(jīng) 歷從具體實例抽象出數(shù)學概念的過程,培養(yǎng)學生觀察、分析和概括能力;

  4 . 通過斜率概念的建立以及斜率公式的構(gòu)建,幫助學生進一步體會數(shù)形結(jié)合的思想,培養(yǎng)學

  生嚴謹求簡的數(shù)學精神。

  重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。

  難點: 直線的傾斜角與斜率的概念的形成 ,斜率公式的構(gòu)建。

  (四)教法和學法

  課堂教學應(yīng)有利于學生的數(shù)學素質(zhì)的形成與發(fā)展,即在課堂教學過程中,創(chuàng)設(shè)問題的情景,激發(fā)學生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學生學習的主動性、積極性;有效的滲透數(shù)學思想方法,發(fā)展學生個性思維品質(zhì),這是本節(jié)課的教學原則。 根據(jù)這樣的教學原則,考慮到學生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用 設(shè)置問題串 的形式 , 啟發(fā)引導 學生 類比、聯(lián)想,產(chǎn)生知識遷移 ;通過 幾何畫板演示實驗、探索交流 相結(jié)合的教學方法激發(fā)學生 觀察、實驗,體驗知識的形成過程 ;由此循序漸進 , 使學生很自然達到本節(jié)課的學習目標。

  ( 五) 教學過程

  環(huán)節(jié) 1.指明研究方向 (3min)

  平面上的點可以用坐標表示,也就是幾何問題代數(shù)化。那么我們生活中見到的很多優(yōu)美的曲線能否用數(shù)來刻畫呢?

  簡介17 世紀法國數(shù)學家笛卡爾和費馬的數(shù)學史 。

  【設(shè)計意圖】 使學生對解析幾何的歷史以及它的研究方向有一個大致的了解

  由此引入課題(直線的傾斜角與斜率)

  環(huán)節(jié)2.活動探究(13min)

  【設(shè)計意圖】 讓學生經(jīng)歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產(chǎn)生是自然的,并不是硬性規(guī)定的。

  (探究活動一:傾斜角概念的得出)

  問題1. 如圖,對于平面直角坐標系內(nèi)過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區(qū)別在哪里?

  【設(shè)計意圖】引導學生發(fā)現(xiàn)過定點的不同直線,其傾斜程度不同。從而發(fā)現(xiàn)過直線上一點和直線的傾斜程度也能確定一條直線。

  問題2. 在直角坐標系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢?

  【設(shè)計意圖】引導學生探索描述直線的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線L與x軸相交,我們?nèi)軸為基準,x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。

  問題3. 依據(jù)傾斜角的定義,小組合作探究傾斜角的范圍是多少?

  (探究活動二:斜率概念的得出)

  問題4. 日常生活中,還有沒有表示傾斜程度的量?

  問題5 . 如果使用“傾斜角”的概念,坡度實際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度?

  由學生已知坡度中“前進量”不能為0 ,補充 傾斜角 是90゜的直線 沒有斜率

  【設(shè)計意圖】 遷移、類比得出 我們把 一條直線的 傾斜角 的正切值叫做 這條 直線的 斜率 , 讓學生感受數(shù)學概念來源于生活,并體驗從直觀到抽象的過程培養(yǎng)學生觀察、歸納、聯(lián)想的能力。

  環(huán)節(jié) 3.過程體驗(斜率公式的發(fā)現(xiàn))(10min)

  問題6. 兩點能確定一條直線,那么兩點能確定一條直線的斜率么?

  先由每名學生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。

  為了深化對公式的理解,完善對公式的認識,我設(shè)計了如下三個思考問題:

  思考1:如果直線AB//x軸,上述結(jié)論還適用嗎?

  思考2:如果直線AB//y軸,上述結(jié)論還適用嗎?

  思考3:交換A、B位置,對比值有影響嗎?

  在學生充分思考、討論的基礎(chǔ)上,借助信息技術(shù)工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學生親自操作幾何畫板,改變直線的傾斜程度,動態(tài)演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學生更好的把握斜率公式。

  環(huán)節(jié)4. 操作建構(gòu)(10min)

  第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。

  學生獨立完成后,請三位學生作答,師生共同評析,明確斜率公式的運用,強調(diào)可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。

  第二部分 ( 教材例二 ) : 在平面直角坐標系中,畫出經(jīng)過原 點且斜率分別為1,-1,2及-3的直線

  本題要求學生畫圖,目的是加強數(shù)形結(jié)合,我將請兩位同學上臺板演,其余同學在練習本上完成,因為直線經(jīng)過原點,所以只要在找出另外一點就可確定,再推導斜率公式時,學生已經(jīng)知道,斜率k的值與直線上P1,P2的位置無關(guān),因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。

  環(huán)節(jié) 5.小結(jié)作業(yè)(4min)

  1、本節(jié)課你學到了哪些新的概念?他們之間有什么樣 的關(guān)系?

  2、怎樣求出已知兩點的直線的斜率?

  3 、本節(jié)課你還有哪些問題?

  兩點 直線 傾斜角 斜率

  一點一方向

  作業(yè): 必做題: P.86 第1,2,題

  選做題: P.90 探究與發(fā)現(xiàn):魔法師的地毯

  以上五個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,以明線和暗線雙線滲透。并注意調(diào)動學生自主探究與合作交流。注意教師適時的點撥引導,學生主體地位和教師的主導作用 得以 體現(xiàn)。能夠較好的實現(xiàn)教學目標,也使課標理念能夠很好的得到落實。

  (六) 板書設(shè)計

  3.1.1 直線的傾斜角與斜率

  1定義: 傾斜角 學生板演

  斜率

  2.斜率k與傾斜角之間的關(guān)系

  3.斜率公式

高中數(shù)學說課稿 篇5

  一、 說教材

 。ㄒ唬┙滩牡牡匚缓妥饔

  本節(jié)內(nèi)容著重介紹了三角形的三種特殊線段,已學過的過直線外一點作已知直線的垂線、線段的中點、角的平分線等知識是學習本節(jié)新知識的基礎(chǔ),其中三角形的高學生從小學起已開始接觸,教材從學生已有認知出發(fā),從高入手,利用圖形,給高作了具體定義,使學生了解三角形的高為線段,進而引出三角形的另外幾種特殊線段——中線、角平分線。通過本節(jié)內(nèi)容學習,可使學生掌握三角形的高、中線、角平分線與垂線、角平分線的聯(lián)系與區(qū)別。通過學習作圖、觀察與探究,會發(fā)現(xiàn)三角形的三條高所在的直線、三條角平分線、三條中線都各自交于一點,這為以后三角形的內(nèi)心、重心等知識的學習打下一定的基礎(chǔ),另外,本節(jié)內(nèi)容也是日后學習等腰三角形等特殊三角形的墊腳石。故學好本節(jié)內(nèi)容是十分必要的。因此,對三角的高、中線、角平分線定義的理解及畫法的掌握是本節(jié)教學的重點,而三角形的高由于三角形的形狀改變而使其位置呈現(xiàn)多樣性,學生難以掌握,故在各類三角形中作出它們是本課的難點。

 。ǘ┙虒W目標分析

  本節(jié)課的教學設(shè)計力圖體現(xiàn)“尊重學生,注重發(fā)展”的教學理念,著重培養(yǎng)和發(fā)展學生基本作圖能力、語言表達能力、觀察能力等,根據(jù)這一目的確定本節(jié)教學目標為:

  1、理解三角形的高、中線、角平分線的概念

  2、能正確作出一個三角形的高、中線、角平分線

  3、通過觀察、探究、畫一畫、折一折與描述等數(shù)學活動,感受數(shù)學語言的準確性,提高觀察能力,語言表達能力,發(fā)展推理能力。

  重點:掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出它們

  難點:在各種三角形中作出它們的高

  二、 說教法

  1、情境創(chuàng)設(shè)法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng)設(shè)問題情境,并引導學生去簡單分析思路,目的使數(shù)學能密切聯(lián)系實際體現(xiàn)知識的形成和應(yīng)用過程。以實際問題為出發(fā)點和歸宿,更能貼近學生生活,以激發(fā)學生對學習本節(jié)內(nèi)容的求知欲,培養(yǎng)他們運用所學知識解決問題的能力。

  2、加強學生學習的主動性與探究性 在課堂中要充分調(diào)動學生自主學習的潛能,讓他們自由探究中發(fā)現(xiàn),從而發(fā)展他們的創(chuàng)新能力,讓他們感受到成功的喜悅。學生在畫一畫、折一折、何三個探究活動中體驗數(shù)學知識的形成過程。當學生在探究過程中遇到困難時,才取消組建的交流與合作,充分發(fā)揮學生的團隊作用,以更好地激發(fā)學生的積極思維,得到更大的收獲。

  3、運用多媒體等作為教輔工具,增強學生的直觀感受,掃除學生從形象思維難以跨越到抽象思維的障礙,突出重點,突破難點。

  三、說學法

  1、本節(jié)重點是三角形的三種重要線段,難點是對三角形的角平分線、中線、高的準確理解、作圖與正確運用,而突破難點的關(guān)鍵是運用好數(shù)形結(jié)合的數(shù)學思想從畫圖入手,從大量的活動入手獲得三種線段的直觀形象,進一步架起數(shù)與形之間的橋梁,加強知識間的相互聯(lián)系。

  2、小組討論、合作探究,既可讓學生互相啟發(fā),互相促進,積極交流,表達思想又可促進數(shù)學思考,擴大和加深對問題的認識,本節(jié)課中我讓學生以小組進行探究,歸納圖形特征,做到仔細觀察,大膽探索,勇于發(fā)現(xiàn),抽象概括。讓學生通過探索活動來發(fā)現(xiàn)結(jié)論,經(jīng)歷知識的“再發(fā)現(xiàn)”過程,從而改變學生學習的方式,發(fā)展創(chuàng)新思維能力。

  四、說教學過程:

  1、創(chuàng)設(shè)問題情境,引出新知: 從生活實例引出新問題,調(diào)動學生學習積極性

  2、預(yù)習檢查:以題組的形勢

  考點1:三角形的高

  1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.

  2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.

  3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說話中錯誤的是( )

  A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高

  7.1.2《三角形的高、中線、角平分線》說課稿

  圖7.1.2-1 圖7.1.2-2 圖7.1.2-3

  4.如果一個三角形的三條高的交點恰是三角形的一個頂點,那么這個三角形是( )

  A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定

  5.三角形的三條高的交點一定在( )

  A.三角形內(nèi)部 B.三角形的外部 C.三角形的內(nèi)部或外部 D.以上答案都不對

  考點2:三角形的中線與角平分線

  6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.

  (2)AE平分∠BAC,交BC于E點,則AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中線、角平分線》說課稿∠________.

  (3)若AF=FC,則△ABC的中線是________,S△ABF=________.

 。4)若BG=GH=HF,則AG是________的中線,AH是________的中線.

  圖7.1.2-5 圖7.1.2-6 圖7.1.2-7

  7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線,∠ACB=60°,那么∠EDC=______度.

  8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中線、角平分線》說課稿∠ABC,則AD是△ABC的________線,BN是△ABC的________,

  ND是△BNC的________線.

  9.下列判斷中,正確的個數(shù)為( )

  (1)D是△ABC中BC邊上的一個點,且BD=CD,則AD是△ABC的中線

 。2)D是△ABC中BC邊上的一個點,且∠ADC=90°,則AD是△ABC的高

 。3)D是△ABC中BC邊上的一個點,且∠BAD=7.1.2《三角形的高、中線、角平分線》說課稿∠BAC,則AD是△ABC的角平分線

 。4)三角形的中線、高、角平分線都是線段

  A.1 B.2 C.3 D.4

  3、探究活動1:探究三角形的高,師提出問題,生獨立解答,教師關(guān)注學生對高和邊的對應(yīng)關(guān)系是否明確,并結(jié)合圖形引出三角形高的定義,并且利用圖形,讓生用語言描述,師加以修正,目的發(fā)展學生的觀察力與語言表述能力。在此基礎(chǔ)上讓學生明確三角形的高是一條線段。為了培養(yǎng)學生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當修正與鼓勵。

  在活動中,師應(yīng)重點關(guān)注:

 、賹W生能否多方位的加以探究

 、趯W生能否用流利的語言描述自己的發(fā)現(xiàn)

 、蹖W生能否對不同的觀點進行質(zhì)疑,感受數(shù)學結(jié)論的正確性。之后設(shè)計的是鞏固性練習,通過學生練習,對三角形高的的有關(guān)知識加以鞏固,讓學生從運用所學知識解決問題的過程,獲得成功的體驗,從而激發(fā)他們學習的積極性。

  3、探究活動2 : 探究三角形的中線:學生在畫一畫中體會三角形中線的定義,培養(yǎng)學生動腦、動手能力,語言表達能力。

  4、探究活動3:探究三角形的角平分線。首先讓學生折一折,在動手操作中體會折痕是否平分三角形的內(nèi)角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述小組所探究的'結(jié)論,師加以適當修正與鼓勵。從而很好的培養(yǎng)了學生的動手操作和探究能力。

  5、練習鞏固,深化拓展

  先以搶答形式解決問題1、問題2,讓學生利用所學知識,進一步鞏固三角形的高、中線、角平分線的有關(guān)概念,提高學生獨立解決問題的能力。拓展練習是一個綜合性題目,一方面引導學生從復雜圖形中抽取基本圖形,從而加強學生對概念的掌握,進一步發(fā)展學生的思維,拓展能力,運用以增強直觀性。

  6、感悟與收獲:進一步提升學生對知識點理解。

  7、作業(yè)布置:讓學生運用數(shù)學知識解決生活實例,是讓學生感受數(shù)學和生活的聯(lián)系及數(shù)學在生活中的重要性,充分體現(xiàn)數(shù)學于生活又還原于生活。

高中數(shù)學說課稿 篇6

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

  奇偶性是函數(shù)的一條重要性質(zhì),教材從學生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

  2、學情分析

  從學生的認知基礎(chǔ)看,學生在初中已經(jīng)學習了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學習了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

  從學生的思維發(fā)展看,高一學生思維能力正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

  3、教學目標

  基于以上對教材和學生的分析,以及新課標理念,我設(shè)計了這樣的教學目標:

  【知識與技能】

  1、能判斷一些簡單函數(shù)的奇偶性。

  2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價值觀】

  通過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學的對稱美。

  從課堂反應(yīng)看,基本上達到了預(yù)期效果。

  4、教學重點和難點

  重點:函數(shù)奇偶性的概念和幾何意義。

  幾年的教學實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。

  難點:奇偶性概念的數(shù)學化提煉過程。

  由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學化提煉過程設(shè)計為本節(jié)課的難點。

  二、教法與學法分析

  1、教法

  根據(jù)本節(jié)教材內(nèi)容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達到了預(yù)期效果。

  2、學法

  讓學生在觀察一歸納一檢驗一應(yīng)用的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學生掌握知識。

  三、教學過程

  具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學以致用。下面我對這六個環(huán)節(jié)進行說明。

 。ㄒ唬┰O(shè)疑導入、觀圖激趣

  由于本節(jié)內(nèi)容相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的內(nèi)容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。

  用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數(shù)圖象。通過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

 。ǘ┲笇в^察、形成概念

  在這一環(huán)節(jié)中共設(shè)計了2個探究活動。

  探究1 、2 數(shù)學中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是通過學生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學生很快就說出函數(shù)圖象關(guān)于Y軸(原點)對稱。接著學生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導學生先把它們具體化,再用數(shù)學符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內(nèi)任意一個 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。

  在這個過程中,學生把對圖形規(guī)律的感性認識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。

 。ㄈ 學生探索、領(lǐng)會定義

  探究3 下列函數(shù)圖象具有奇偶性嗎?

  設(shè)計意圖:深化對奇偶性概念的理解。強調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)

  (四)知識應(yīng)用,鞏固提高

  在這一環(huán)節(jié)我設(shè)計了4道題

  例1判斷下列函數(shù)的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。

  例1設(shè)計意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關(guān)于原點對稱;

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數(shù)的奇偶性:

  例3 判斷下列函數(shù)的奇偶性:

  例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?

  例4(1)判斷函數(shù)的奇偶性。

 。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設(shè)計意圖加強函數(shù)奇偶性的幾何意義的應(yīng)用。

  在這個過程中,我重點關(guān)注了學生的推理過程的表述。通過這些問題的解決,學生對函數(shù)的奇偶性認識、理解和應(yīng)用都能提升很大一個高度,達到當堂消化吸收的效果。

 。ㄎ澹┛偨Y(jié)反饋

  在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學法的特色。

  在本節(jié)課的最后對知識點進行了簡單回顧,并引導學生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學習數(shù)學更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用能力、增強錯誤的預(yù)見能力是提高數(shù)學綜合能力的很重要的策略。

  (六)分層作業(yè),學以致用

  必做題:課本第36頁練習第1-2題。

  選做題:課本第39頁習題1、3A組第6題。

  思考題:課本第39頁習題1、3B組第3題。

  設(shè)計意圖:面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎(chǔ)知識,又使學有余力的學生有所提高,進一步達到不同的人在數(shù)學上得到不同的發(fā)展。

高中數(shù)學說課稿 篇7

  一、教材分析

  1、教材的地位和作用:

  函數(shù)是高中數(shù)學學習的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學之中。本節(jié)課是學生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù)及指數(shù)函數(shù)的圖像和性質(zhì),同時也為今后研究對數(shù)函數(shù)及其性質(zhì)打下堅實的基礎(chǔ)。因此本節(jié)課內(nèi)容十分重要,它對知識起著承上啟下的作用。

  2、教學的重點和難點:

  根據(jù)這節(jié)課的內(nèi)容特點及學生的實際情況,我將本節(jié)課教學重點定為指數(shù)函數(shù)的圖像、性質(zhì)及應(yīng)用,難點定為指數(shù)函數(shù)性質(zhì)的發(fā)現(xiàn)過程及指數(shù)函數(shù)與底的關(guān)系。

  二、教學目標分析

  基于對教材的理解和分析,我制定了以下教學目標:

  1、理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)圖像、性質(zhì)及其簡單應(yīng)用。

  2、通過教學培養(yǎng)學生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合思想和分類討論思想,增強學生識圖用圖的能力。

  3、培養(yǎng)學生對知識的嚴謹科學態(tài)度和辯證唯物主義觀點。

  三、教法學法分析

  1、學情分析

  教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也逐步形成,但由于年齡的原因,思維盡管活躍敏捷,卻缺乏冷靜深刻。因此思考問題片面不嚴謹。

  2、教法分析:基于以上學情分析,我采用先學生討論,再教師講授教學方法。一方面培養(yǎng)學生的觀察、分析、歸納等思維能力。另一方面用教師的講授來糾正由于學生思維過分活躍而走入的誤區(qū),和彌補知識的不足,達到能力與知識的雙重效果。

  3、學法分析

  讓學生仔細觀察書中給出的實際例子,使他們發(fā)現(xiàn)指數(shù)函數(shù)與現(xiàn)實生活息息相關(guān)。再根據(jù)高一學生愛動腦懶動手的特點,讓學生自己描點畫圖,畫出指數(shù)函數(shù)的圖像,繼而用自己的語言總結(jié)指數(shù)函數(shù)的性質(zhì),學生經(jīng)歷了探究的過程,培養(yǎng)探究能力和抽象概括的能力。

  四、教學過程

  (一)創(chuàng)設(shè)情景

  問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細胞分裂 次后,得到的細胞分裂的個數(shù) 與 之間,構(gòu)成一個函數(shù)關(guān)系,能寫出 與 之間的函數(shù)關(guān)系式嗎?

  學生回答: 與 之間的關(guān)系式,可以表示為 。

  問題2:折紙問題:讓學生動手折紙

  學生回答:①對折的次數(shù) 與所得的層數(shù) 之間的關(guān)系,得出結(jié)論

 、趯φ鄣拇螖(shù) 與折后面積 之間的關(guān)系(記折前紙張面積為1),得出結(jié)論

  問題3:《莊子。天下篇》中寫到“一尺之棰,日取其半,萬世不竭”。

  學生回答:寫出取 次后,木棰的剩留量與 與 的函數(shù)關(guān)系式。

  設(shè)計意圖:

  (1)讓學生在問題的情景中發(fā)現(xiàn)問題,遇到挑戰(zhàn),激發(fā)斗志,又引導學生在簡單的具體問題中抽象出共性,體驗從簡單到復雜,從特殊到一般的認知規(guī)律。從而引入兩種常見的指數(shù)函數(shù)① ②

  (2)讓學生感受我們生活中存在這樣的指數(shù)函數(shù)模型,便于學生接

  受指數(shù)函數(shù)的形式。

  (二)導入新課

  引導學生觀察,三個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。

  設(shè)計意圖:充實實例,突出底數(shù)a的取值范圍,讓學生體會到數(shù)學來源于生產(chǎn)生活實際。函數(shù) 分別以 的數(shù)為底,加深對定義的感性認識,為順利引出指數(shù)函數(shù)定義作鋪墊。

  (三)新課講授

  1.指數(shù)函數(shù)的定義

  一般地,函數(shù) 叫做指數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是R。

  含義:

  設(shè)計意圖:為 按兩種情況得出指數(shù)函數(shù)性質(zhì)作鋪墊。若學生回答不合適,引導學生用區(qū)間表示:

  問題:指數(shù)函數(shù)定義中,為什么規(guī)定“ ”如果不這樣規(guī)定會出現(xiàn)什么情況?

  設(shè)計意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點,為突破難點,采取學生自由討論的形式,達到互相啟發(fā),補充,活躍氣氛,激發(fā)興趣的目的。

  對于底數(shù)的分類,可將問題分解為:

  (1)若 會有什么問題?(如 ,則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)

  (2)若 會有什么問題?(對于 , 都無意義)

  (3)若 又會怎么樣?( 無論 取何值,它總是1,對它沒有研究的必要.)

  師:為了避免上述各種情況的發(fā)生,所以規(guī)定 。

  在這里要注意生生之間、師生之間的對話。

  設(shè)計意圖:認識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是R;并為學習對數(shù)函數(shù),認識指數(shù)與對數(shù)函數(shù)關(guān)系打基礎(chǔ)。

  教師還要提醒學生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。

  1:指出下列函數(shù)那些是指數(shù)函數(shù):

  2:若函數(shù) 是指數(shù)函數(shù),則

  3:已知 是指數(shù)函數(shù),且 ,求函數(shù) 的解析式。

  設(shè)計意圖 :加深學生對指數(shù)函數(shù)定義和呈現(xiàn)形式的理解。

  2.指數(shù)函數(shù)的圖像及性質(zhì)

  在同一平面直角坐標系內(nèi)畫出下列指數(shù)函數(shù)的圖象

  畫函數(shù)圖象的步驟:列表、描點、連線

  思考如何列表取值?

  教師與學生共同作出 圖像。

  設(shè)計意圖:在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖像與性質(zhì),是本節(jié)的重點。關(guān)鍵在于弄清底數(shù)a對于函數(shù)值變化的影響。對于 時函數(shù)值變化的不同情況,學生往往容易混淆,這是教學中的一個難點。為此,必須利用圖像,數(shù)形結(jié)合。教師親自板演,學生親自在課前準備好的坐標系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結(jié)合思想方法打下基礎(chǔ)。

  利用幾何畫板演示函數(shù) 的圖象,觀察分析圖像的共同特征。由特殊到一般,得出指數(shù)函數(shù) 的圖象特征,進一步得出圖象性質(zhì):

  教師組織學生結(jié)合圖像討論指數(shù)函數(shù)的性質(zhì)。

  設(shè)計意圖:這是本節(jié)課的重點和難點,要充分調(diào)動學生的積極性、主動性,發(fā)揮他們的潛能,盡量由學生自主得出性質(zhì),以便能夠更深刻的記憶、更熟練的運用。

  師生共同總結(jié)指數(shù)函數(shù)的性質(zhì),教師邊總結(jié)邊板書。

  特別地,函數(shù)值的分布情況如下:

  設(shè)計意圖:再次強調(diào)指數(shù)函數(shù)的單調(diào)性與底數(shù)a的關(guān)系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。

  (四)鞏固與練習

  例1: 比較下列各題中兩值的大小

  教師引導學生觀察這些指數(shù)值的特征,思考比較大小的方法。

  (1)(2)兩題底相同,指數(shù)不同,(3)(4)兩題可化為同底的,可以利用函數(shù)的單調(diào)性比較大小。

  (5)題底不同,指數(shù)相同,可以利用函數(shù)的圖像比較大小。

  (6)題底不同,指數(shù)也不同,可以借助中介值比較大小。

  例2:已知下列不等式 , 比較 的大小 :

  設(shè)計意圖:這是指數(shù)函數(shù)性質(zhì)的簡單應(yīng)用,使學生在解題過程中加深對指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。

  (五)課堂小結(jié)

  通過本節(jié)課的學習,你學到了哪些知識?

  你又掌握了哪些數(shù)學思想方法?

  你能將指數(shù)函數(shù)的學習與實際生活聯(lián)系起來嗎?

  設(shè)計意圖:讓學生在小結(jié)中明確本節(jié)課的學習內(nèi)容,強化本節(jié)課的學習重點,并為后續(xù)學習打下基礎(chǔ)。

  (六)布置作業(yè)

  1、練習B組第2題;習題3-1A組第3題

  2、A先生從今天開始每天給你10萬元,而你承擔如下任務(wù):第一天給A先生1元,第二天給A先生2元,,第三天給A先生4元,第四天給A先生8元,依次下去,…,A先生要和你簽定15天的合同,你同意嗎?又A先生要和你簽定30天的合同,你能簽這個合同嗎?

  3、觀察指數(shù)函數(shù) 的圖象,比較 的大小。

高中數(shù)學說課稿 篇8

  一、說設(shè)計理念

  《數(shù)學課程標準》指出要讓學生感受生活中處處有數(shù)學,用數(shù)學知識解決生活中的實際問題。

  基于這一理念,我在教學過程中力求聯(lián)系學生生活實際和已有的知識經(jīng)驗,從學生感興趣的素材,設(shè)計新穎的導入與例題教學,給數(shù)學課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學氛圍,讓學生經(jīng)歷知識的探究過程,培養(yǎng)學生感受生活中的數(shù)學和用數(shù)學知識解決生活問題的能力,體驗數(shù)學的應(yīng)用價值。

  二、教材分析:

 。ㄒ唬┙滩牡牡匚缓妥饔

  有關(guān)統(tǒng)計圖的認識,小學階段主要認識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖?紤]到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標準》把它作為必學內(nèi)容安排在本單元。本單元是在前面學習了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎(chǔ)上進行教學的。主要通過熟悉的事例使學生體會到扇形統(tǒng)計圖的實用價值。

 。ǘ┙虒W目標

  1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點和作用

  2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。

  3、讓學生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。

  (三)教學重點:

  1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。

  2、認識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。

 。ㄋ模┙虒W難點:

  1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。

  2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。

  二、學情分析

  本單元的教學是在學生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學習新知的。六年級的學生已經(jīng)學習了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。

  三、設(shè)計理念和教法分析

  1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學生”,由“傳授知識”轉(zhuǎn)向“引導探索”,“教師是組織者、領(lǐng)導者!睂⒄n堂設(shè)置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。

  2、運用探究法。探究學習的內(nèi)容以問題的形式出現(xiàn)在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導學生獲取信息并合作交流。

  四、說學法

  《數(shù)學課程標準》指出有效的數(shù)學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數(shù)學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關(guān)注身邊的數(shù)學,使學生體會到觀察、概括、想象、遷移等數(shù)學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養(yǎng)學生學習的主動性和積極性。

  五、說教學程序

  本課分成創(chuàng)設(shè)情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

  六、說教學過程

 。ㄒ唬⿵土曇

  1、復習舊知

  提問:我們學習過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?

  2、引入新課

 。ǘ┳灾魈剿,學習新知

  新知識教學分二步教學:第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。

  第二步實踐應(yīng)用環(huán)節(jié)。在教學中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進行推理與判斷

  三、課堂總結(jié)

  四、布置作業(yè)。

  五、板書設(shè)計:

高中數(shù)學說課稿 篇9

  一、教材分析:

  1.教材所處的地位和作用:

  本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數(shù)學教材數(shù)學2第一章空間幾何體3節(jié)內(nèi)容。在此之前學生已學習了空間幾何體的結(jié)構(gòu)、三視圖和直觀圖為基礎(chǔ),這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學科和今后的學習打下基礎(chǔ)。

  2.教育教學目標:

  根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:

  知識與能力:

 。1)了解柱體、錐體、臺體的表面積.

  (2)能用公式求柱體、錐體、臺體的表面積。

 。3)培養(yǎng)學生空間想象能力和思維能力

  過程與方法:

  讓學生經(jīng)歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學生對數(shù)學問題的轉(zhuǎn)化化歸能力。

  情感、態(tài)度與價值觀:

  通過學習,是學生感受到幾何體表面積的求解過程,激發(fā)學生探索、創(chuàng)新意識,增強學習積極性。

  3.重點,難點以及確定依據(jù):

  本著新課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學重點、難點

  教學重點:柱,錐,臺的表面積公式的推導

  教學難點:柱,錐,臺展開圖與空間幾何體的轉(zhuǎn)化

  二、教法分析

  1.教學手段:

  如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點:應(yīng)著重采用合作探究、小組討論的教學方法。

  2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的探究式討論教學法。在學生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學生,面向全體,使基礎(chǔ)差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎(chǔ)上得到發(fā)展。啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關(guān)的數(shù)學知識,學習基礎(chǔ)性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應(yīng)在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

  三.學情分析

  我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

 。1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散

 。2)動機和興趣上:明確的學習目的,老師應(yīng)在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力

  最后我來具體談?wù)勥@一堂課的教學過程:

  四、教學過程分析

  (1)由一段動畫視頻引入:豐富生動的吸引學生的注意力,調(diào)動學生學習積極性

 。2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。

 。3)探究問題。完全將主動權(quán)教給學生,讓學生主動去探究,得到解決問題的思路,鍛煉學生動手能力,解決實際問題能力。

 。4)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。

 。5)例題及練習,見學案。

 。6)布置作業(yè)。

  針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎(chǔ)知識,又使學有余力的學生有所提高,

 。7)小結(jié)。讓學生總結(jié)本節(jié)課的收獲。老師適時總結(jié)歸納。

【有關(guān)高中數(shù)學說課稿范文集合9篇】相關(guān)文章:

有關(guān)高中數(shù)學說課稿范文5篇07-23

有關(guān)高中數(shù)學說課稿模板集合八篇08-02

有關(guān)高中數(shù)學說課稿模板集合9篇07-27

有關(guān)高中數(shù)學說課稿模板集合6篇07-25

有關(guān)高中數(shù)學說課稿模板集合六篇07-20

有關(guān)高中數(shù)學說課稿范文集合十篇08-19

高中數(shù)學經(jīng)典說課稿范文06-24

有關(guān)高中數(shù)學說課稿范文合集9篇08-01

有關(guān)高中數(shù)學說課稿范文合集5篇07-31