高中數(shù)學(xué)經(jīng)典說課稿(15篇)
作為一名人民教師,往往需要進行說課稿編寫工作,說課稿可以幫助我們提高教學(xué)效果。那么問題來了,說課稿應(yīng)該怎么寫?以下是小編整理的高中數(shù)學(xué)經(jīng)典說課稿,僅供參考,大家一起來看看吧。
高中數(shù)學(xué)經(jīng)典說課稿1
各位評委:下午好!
我叫 ,來自 。今天我說課的課題《 》(第 課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
《 》是人教版出版社 第 冊、第 單元的內(nèi)容。《》既是 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。
。ǘ、學(xué)情分析
通過前一階段的教學(xué),學(xué)生對 的認識已有了一定的認知結(jié)構(gòu),主要體現(xiàn)在三個層面:
知識層面:學(xué)生在已初步掌握了 。
能力層面:學(xué)生在初步已經(jīng)掌握了用
初步具備了 思想。 情感層面:學(xué)生對數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.
(三)教學(xué)課時
本節(jié)內(nèi)容分 課時學(xué)習(xí)。(本課時,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。)
二、教學(xué)目標分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高中生的認知規(guī)律,本節(jié)課的教學(xué)目標確定為:
知識與技能:
過程與方法:
情感態(tài)度:
。ɡ纾簞(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 通過 對立統(tǒng)一關(guān)系的認識,對學(xué)生進行辨證唯物主義教育)
在探索過程中,培養(yǎng)獨立獲取數(shù)學(xué)知識的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時,讓學(xué)生養(yǎng)成理性思維的品質(zhì)。
三、重難點分析
重點確定為:
要把握這個重點。關(guān)鍵在于理解
其本質(zhì)就是
本節(jié)課的難點確定為:
要突破這個難點,讓學(xué)生歸納
作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
。ǘ┙谭ǚ治
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實現(xiàn)。
五、說教學(xué)過程
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
。ㄒ唬﹦(chuàng)設(shè)情景………………….
。ǘ┍扰f悟新………………….
。ㄈw納提煉…………………
(四)應(yīng)用新知,熟練掌握 …………………
(五)總結(jié)…………………
。┳鳂I(yè)布置…………………
。ㄆ撸┌鍟O(shè)計…………………
以上是我對本節(jié)課的一些粗淺的認識和構(gòu)想,如有不妥之處,懇請各位專家批評指正。謝謝
著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計劃”、“實現(xiàn)計劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?
高中數(shù)學(xué)經(jīng)典說課稿2
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì)。通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題。通過上述活動,加深對函數(shù)本質(zhì)的認識。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。
3、教學(xué)目標
。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
。2)過程與方法:從實際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
。3)情感態(tài)度價值觀:讓學(xué)生體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。
4、重點與難點
教學(xué)重點(1)函數(shù)單調(diào)性的概念;
。2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。
教學(xué)難點(1)函數(shù)單調(diào)性的知識形成;
。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性。
2、在運用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決。
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴謹?shù)耐评,并成功地完成書面表達。
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。
在學(xué)法上:
1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的一個飛躍。
三、 教學(xué)過程
教學(xué)
環(huán)節(jié)
教 學(xué) 過 程
設(shè) 計 意 圖
問題
情境
。úシ胖醒腚娨暸_天氣預(yù)報的音樂)
滿足在定義域上的單調(diào)性的討論。
2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學(xué)生認知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。
3、重視學(xué)生的動手實踐過程。通過對定義的解讀、鞏固,讓學(xué)生動手去實踐運用定義。
4、重視課堂問題的設(shè)計。通過對問題的設(shè)計,引導(dǎo)學(xué)生解決問題。
高中數(shù)學(xué)經(jīng)典說課稿3
一、教學(xué)目標:
知識與技能目標:準確理解橢圓的定義,掌握橢圓的標準方程及其推導(dǎo)。
過程與方法目標:通過引導(dǎo)學(xué)生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。
情感、態(tài)度與價值觀目標:通過經(jīng)歷橢圓方程的化簡,增強學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學(xué)的簡潔美、對稱美,通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學(xué)生扎實嚴謹?shù)目茖W(xué)態(tài)度。
二、教學(xué)重點、難點:
重點是橢圓的定義及標準方程,難點是推導(dǎo)橢圓的標準方程。
三、教學(xué)過程:
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容和形式
設(shè)計意圖
復(fù)習(xí)
提問:
。1)圓的定義是什么?圓的標準方程的形式怎樣?
。2)如何推導(dǎo)圓的標準方程呢?
激活學(xué)生已有的認知結(jié)構(gòu),為本課推導(dǎo)橢圓標準方程提供了方法與策略。
講授新課
一、授新
1.橢圓的定義:(略)
活動過程:
操作-----交流-----歸納-----多媒體演示-----聯(lián)系生活
形成概念:
操作:
<1>固定一條細繩的兩端,用筆尖將細繩拉緊并運動,在紙上你得到了怎樣的圖形?
在動手過程中,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。
在變化的過程中發(fā)現(xiàn)圓與橢圓的聯(lián)系;建立起用聯(lián)系與發(fā)展的觀點看問題;為下一節(jié)深入研究方程系數(shù)的幾何意義埋下伏筆。
教學(xué)環(huán)節(jié)
深化概念:
注:1、平面內(nèi)。
2、若,則點P的軌跡為橢圓。
若,則點P的軌跡為線段。
若,則點P的軌跡不存在。
聯(lián)系生活:
情境1.生活中,你見過哪些類似橢圓的圖形或物體?
情境2.讓學(xué)生觀察傾斜的圓柱形水杯的水面邊界線,并從中抽象出數(shù)學(xué)模型.(教師用多媒體演示)
情境3.觀看天體運行的軌道圖片。
教學(xué)內(nèi)容和形式:
準確理解橢圓的定義。
滲透數(shù)學(xué)源于生活,圓錐曲線在生產(chǎn)和技術(shù)中有著廣泛的應(yīng)用。
設(shè)計意圖:
2.橢圓的標準方程:
例:已知點、為橢圓的兩個焦點,P為橢圓上的任意一點,且,其中,求橢圓的方程
活動過程:點撥-----板演-----點評
一般步驟:
(1)建系設(shè)點
(2)寫出點的集合
(3)寫出代數(shù)方程
(4)化簡方程:
<1>請一位基礎(chǔ)較好,書寫規(guī)范的同學(xué)板演。
。5)證明:討論推導(dǎo)的等價性
掌握橢圓標準方程及推導(dǎo)方法。
培養(yǎng)學(xué)生戰(zhàn)勝困難的意志品質(zhì)并感受數(shù)學(xué)的簡潔美、對稱美。
養(yǎng)成學(xué)生扎實嚴謹?shù)目茖W(xué)態(tài)度。
應(yīng)用
舉例
教學(xué)環(huán)節(jié)
二、應(yīng)用
例1.(1)橢圓的焦點坐標為:
(2)橢圓的焦距為4,則m的值為:
活動過程:思考-----解答-----點評
例2.已知橢圓焦點的坐標分別是(-4,0)、(4,0),橢圓上一點P到兩焦點的距離的和等于10,求橢圓的標準方程
活動過程:思考-----解答-----點評
變式<1>已知橢圓焦點的坐標分別是(-4,0)(4,0),且經(jīng)過點,求橢圓的標準方程。
求橢圓的標準方程
活動過程:思考-----解答-----點評
認清橢圓兩種標準方程形式上的特征。
課堂小結(jié):
提問:本節(jié)課學(xué)習(xí)的主要知識是什么?你學(xué)會了哪些數(shù)學(xué)思想與方法?
活動過程:教師提問-----學(xué)生小結(jié)-----師生補充完善。
讓學(xué)生回顧本節(jié)所學(xué)知識與方法,以逐步提高學(xué)生自我獲取知識的能力。
作業(yè)布置:
作業(yè):教材第95頁,練習(xí)2、4,第96頁習(xí)題8-1,1、2、3、
探索:平面內(nèi)到兩個定點的距離差、積、商為定值的點的軌跡是否存在?若存在軌跡是什么?
分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;為學(xué)有余力的學(xué)生留有進一步探索、發(fā)展的空間。
四、板書設(shè)計
8.1橢圓及其標準方程
一、復(fù)習(xí)引入二、新課講解三、習(xí)題研討
1.橢圓的定義
2.橢圓的標準方程
總體說明:本節(jié)課的設(shè)計力圖貫徹"以人的發(fā)展為本"的教育理念,體現(xiàn)"教師為主導(dǎo),學(xué)生為主體"的現(xiàn)代教學(xué)思想。在對橢圓定義的講授中,遵循從生動直觀到抽象概括的教學(xué)原則和教學(xué)途徑,通過引導(dǎo)學(xué)生親自動手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力;讓橢圓生動靈活地呈現(xiàn)在學(xué)生面前,更有助于學(xué)生理解橢圓的內(nèi)涵和外延。對本課另一難點標準方程推導(dǎo)的講授中,在關(guān)鍵處設(shè)疑,以疑導(dǎo)思,讓學(xué)生先從目的、再從方法上考慮,引導(dǎo)學(xué)生對比、分析,師生共同完成。通過經(jīng)歷橢圓方程的化簡,增強了學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會數(shù)學(xué)的簡潔美、對稱美.通過討論橢圓方程推導(dǎo)的等價性養(yǎng)成學(xué)生扎實嚴謹?shù)目茖W(xué)態(tài)度。設(shè)計的例題及變式練習(xí),充分利用新知識解決問題,使所學(xué)內(nèi)容得以鞏固。變式(2)的設(shè)計讓學(xué)生站在方程的角度認清橢圓兩種標準方程形式上的特征,將學(xué)生的思維提升到了一個新的高度。課后分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;課后探索更為學(xué)有余力的學(xué)生留有進一步探索、發(fā)展的空間。在教學(xué)中借助多媒體生動、直觀、形象的特點來突出教學(xué)重點。自始至終很好地調(diào)動學(xué)生的積極性,挖掘他們的內(nèi)在潛能,提高學(xué)生的綜合素質(zhì)。
高中數(shù)學(xué)經(jīng)典說課稿4
各位老師大家好!
我說課的內(nèi)容是人教 版 A版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。
(一) 教材分析
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。
(二) 學(xué)情分析
本節(jié)課的 教學(xué) 對象是高二學(xué)生,這個年齡段的學(xué)生天性活潑,求知欲強,并且學(xué)習(xí)主動,在知識儲備上 知道兩點確定一條直線, 知道點與坐標的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學(xué)生的認知規(guī)律,還沒有形成自覺地把數(shù)學(xué)問題抽象化的能力。所以在教學(xué)設(shè)計時需 從 學(xué)生的最近發(fā)展區(qū)進行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、 鞏固 和應(yīng)用過程。
(三)教學(xué)目標
1. 理解直線的傾斜角和斜率的概念, 理解直線的傾斜角的唯一性和斜率的存在性;
2. 掌握過兩點的直線斜率的計算公式 ;
3. 通過經(jīng) 歷從具體實例抽象出數(shù)學(xué)概念的過程,培養(yǎng)學(xué)生觀察、分析和概括能力;
4 . 通過斜率概念的建立以及斜率公式的構(gòu)建,幫助學(xué)生進一步體會數(shù)形結(jié)合的思想,培養(yǎng)學(xué)
生嚴謹求簡的數(shù)學(xué)精神。
重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。
難點: 直線的傾斜角與斜率的概念的形成 ,斜率公式的構(gòu)建。
(四)教法和學(xué)法
課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過程中,創(chuàng)設(shè)問題的情景,激發(fā)學(xué)生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學(xué)生學(xué)習(xí)的主動性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性思維品質(zhì),這是本節(jié)課的教學(xué)原則。 根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用 設(shè)置問題串 的形式 , 啟發(fā)引導(dǎo) 學(xué)生 類比、聯(lián)想,產(chǎn)生知識遷移 ;通過 幾何畫板演示實驗、探索交流 相結(jié)合的教學(xué)方法激發(fā)學(xué)生 觀察、實驗,體驗知識的形成過程 ;由此循序漸進 , 使學(xué)生很自然達到本節(jié)課的學(xué)習(xí)目標。
( 五) 教學(xué)過程
環(huán)節(jié) 1.指明研究方向 (3min)
平面上的點可以用坐標表示,也就是幾何問題代數(shù)化。那么我們生活中見到的很多優(yōu)美的曲線能否用數(shù)來刻畫呢?
簡介17 世紀法國數(shù)學(xué)家笛卡爾和費馬的數(shù)學(xué)史 。
【設(shè)計意圖】 使學(xué)生對解析幾何的歷史以及它的研究方向有一個大致的了解
由此引入課題(直線的傾斜角與斜率)
環(huán)節(jié)2.活動探究(13min)
【設(shè)計意圖】 讓學(xué)生經(jīng)歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產(chǎn)生是自然的,并不是硬性規(guī)定的。
(探究活動一:傾斜角概念的得出)
問題1. 如圖,對于平面直角坐標系內(nèi)過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區(qū)別在哪里?
【設(shè)計意圖】引導(dǎo)學(xué)生發(fā)現(xiàn)過定點的不同直線,其傾斜程度不同。從而發(fā)現(xiàn)過直線上一點和直線的傾斜程度也能確定一條直線。
問題2. 在直角坐標系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢?
【設(shè)計意圖】引導(dǎo)學(xué)生探索描述直線的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線L與x軸相交,我們?nèi)軸為基準,x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。
問題3. 依據(jù)傾斜角的定義,小組合作探究傾斜角的范圍是多少?
(探究活動二:斜率概念的得出)
問題4. 日常生活中,還有沒有表示傾斜程度的量?
問題5 . 如果使用“傾斜角”的概念,坡度實際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度?
由學(xué)生已知坡度中“前進量”不能為0 ,補充 傾斜角 是90゜的直線 沒有斜率
【設(shè)計意圖】 遷移、類比得出 我們把 一條直線的 傾斜角 的正切值叫做 這條 直線的 斜率 , 讓學(xué)生感受數(shù)學(xué)概念來源于生活,并體驗從直觀到抽象的過程培養(yǎng)學(xué)生觀察、歸納、聯(lián)想的能力。
環(huán)節(jié) 3.過程體驗(斜率公式的發(fā)現(xiàn))(10min)
問題6. 兩點能確定一條直線,那么兩點能確定一條直線的斜率么?
先由每名學(xué)生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學(xué)生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。
為了深化對公式的理解,完善對公式的認識,我設(shè)計了如下三個思考問題:
思考1:如果直線AB//x軸,上述結(jié)論還適用嗎?
思考2:如果直線AB//y軸,上述結(jié)論還適用嗎?
思考3:交換A、B位置,對比值有影響嗎?
在學(xué)生充分思考、討論的基礎(chǔ)上,借助信息技術(shù)工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學(xué)生親自操作幾何畫板,改變直線的傾斜程度,動態(tài)演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學(xué)生更好的把握斜率公式。
環(huán)節(jié)4. 操作建構(gòu)(10min)
第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。
學(xué)生獨立完成后,請三位學(xué)生作答,師生共同評析,明確斜率公式的運用,強調(diào)可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。
第二部分 ( 教材例二 ) : 在平面直角坐標系中,畫出經(jīng)過原 點且斜率分別為1,-1,2及-3的直線
本題要求學(xué)生畫圖,目的是加強數(shù)形結(jié)合,我將請兩位同學(xué)上臺板演,其余同學(xué)在練習(xí)本上完成,因為直線經(jīng)過原點,所以只要在找出另外一點就可確定,再推導(dǎo)斜率公式時,學(xué)生已經(jīng)知道,斜率k的值與直線上P1,P2的位置無關(guān),因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。
環(huán)節(jié) 5.小結(jié)作業(yè)(4min)
1、本節(jié)課你學(xué)到了哪些新的概念?他們之間有什么樣 的關(guān)系?
2、怎樣求出已知兩點的直線的斜率?
3 、本節(jié)課你還有哪些問題?
兩點 直線 傾斜角 斜率
一點一方向
作業(yè): 必做題: P.86 第1,2,題
選做題: P.90 探究與發(fā)現(xiàn):魔法師的地毯
以上五個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,以明線和暗線雙線滲透。并注意調(diào)動學(xué)生自主探究與合作交流。注意教師適時的點撥引導(dǎo),學(xué)生主體地位和教師的主導(dǎo)作用 得以 體現(xiàn)。能夠較好的實現(xiàn)教學(xué)目標,也使課標理念能夠很好的得到落實。
(六) 板書設(shè)計
3.1.1 直線的傾斜角與斜率
1定義: 傾斜角 學(xué)生板演
斜率
2.斜率k與傾斜角之間的關(guān)系
3.斜率公式
高中數(shù)學(xué)經(jīng)典說課稿5
一、教材分析
1、教學(xué)內(nèi)容
本節(jié)課內(nèi)容教材共分兩課時進行,這是第一課時,該課時主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。
2、教材的地位和作用
函數(shù)單調(diào)性是高中數(shù)學(xué)中相當重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。
3、教材的重點﹑難點﹑關(guān)鍵
教學(xué)重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念。
教學(xué)難點:領(lǐng)會函數(shù)單調(diào)性的實質(zhì)與應(yīng)用,明確單調(diào)性是一個局部的概念。
教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認知結(jié)構(gòu)出發(fā),講清楚概念的形成過程、
4、學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學(xué)中注意加強。
二、目標分析
。ㄒ唬┲R目標:
1、知識目標:理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。
2、能力目標:通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動構(gòu)建的能力。
3、情感目標:讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會用運動變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進行辨證唯物主義的思想教育。
。ǘ┻^程與方法
培養(yǎng)學(xué)生嚴密的邏輯思維能力以及用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。
三、教法與學(xué)法
1、教學(xué)方法
在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過程。
2、學(xué)習(xí)方法
自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。
四、過程分析
本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個板塊。這里分別就其過程和設(shè)計意圖作一一分析。
。ㄒ唬﹩栴}情景:
為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件)
新課程理念認為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強化學(xué)生的感性認識,從而達到學(xué)生對數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。
。ǘ┖瘮(shù)單調(diào)性的定義引入
1、幾何畫板動畫演示,請學(xué)生認真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:
從在某一區(qū)間內(nèi)當x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號語言。幾何畫板的靈活使用,數(shù)形有機結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號語言的翻譯變得輕松。
設(shè)計意圖:
①通過學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學(xué)生自主學(xué)習(xí)、獨立思考,由學(xué)會向會學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。
、谕ㄟ^學(xué)生已學(xué)過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。
、蹚膶W(xué)生的原有認知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。
、軓膱D形、直觀認識入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。
。ㄈ┰龊瘮(shù)、減函數(shù)的定義
在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時要求學(xué)生討論概念中的關(guān)鍵詞和注意點。
定義中的“當x1x2時,都有f(x1) 注意: 。1)函數(shù)的單調(diào)性也叫函數(shù)的增減性; 。2)注意區(qū)間上所取兩點x1,x2的任意性; 。3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。 讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。 設(shè)計意圖:通過給出函數(shù)單調(diào)性的嚴格定義,目的是為了讓學(xué)生更準確地把握概念,理解函數(shù)的單調(diào)性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處 理,同時也是讓學(xué)生感悟、體驗學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個性品質(zhì)。 。ㄋ模├}分析 在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。 2、例2、證明函數(shù)在區(qū)間(—∞,+∞)上是減函數(shù)。 在本題的解決過程中,要求學(xué)生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。 變式一:函數(shù)f(x)=—3x+b在R上是減函數(shù)嗎?為什么? 變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 錯誤:實質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論 例題設(shè)計意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調(diào)區(qū)間這一概念的再認識;要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據(jù)單調(diào)函數(shù)的定義進行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結(jié)論,通過例2的解決是學(xué)生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學(xué)生學(xué)會一些常見的變形方法。 (五)鞏固與探究 1、教材p36練習(xí)2,3 2、探究:二次函數(shù)的單調(diào)性有什么規(guī)律? 。◣缀萎嫲逖菔,學(xué)生探究)本問題作為機動題。時間不允許時,就為課后思考題。 設(shè)計意圖:通過觀察圖象,對函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。 通過課堂練習(xí)加深學(xué)生對概念的理解,進一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習(xí)的思考,讓學(xué)生學(xué)會反思、學(xué)會總結(jié)。 。┗仡櫩偨Y(jié) 通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識,同學(xué)們要切記:單調(diào)性是對某個區(qū)間而言的,同時在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進行判斷和證明。 設(shè)計意圖:通過小結(jié)突出本節(jié)課的重點,并讓學(xué)生對所學(xué)知識的結(jié)構(gòu)有一個清晰的認識,學(xué)會一些解決問題的思想與方法,體會數(shù)學(xué)的和諧美。 。ㄆ撸┱n外作業(yè) 1、教材p43習(xí)題1。3A組1(單調(diào)區(qū)間),2(證明單調(diào)性); 2、判斷并證明函數(shù)在上的單調(diào)性。 3、數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認為本節(jié)課中的最重要的知識和方法。 設(shè)計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對本結(jié)內(nèi)容各項目標落實的評價。新課標要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。 (七)板書設(shè)計(見ppt) 五、評價分析 有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計過程中注意了: 第一、教要按照學(xué)的法子來教; 第二、在學(xué)生已有知識結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”; 第三、強化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——歸納總結(jié)”的活動過程,體驗了參與數(shù)學(xué)知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識和能力,成為積極主動的建構(gòu)者。 本節(jié)課圍繞教學(xué)重點,針對教學(xué)目標,以多媒體技術(shù)為依托,展現(xiàn)知識的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣,并注重數(shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。 各位老師你們好!今天我要為大家講的課題是 首先,我對本節(jié)教材進行一些分析: 一、教材分析(說教材): 1. 教材所處的地位和作用: 本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。 2. 教育教學(xué)目標: 根據(jù)上述教材分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標: (1)知識目標: (2)能力目標:通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運用知識的能力,培養(yǎng)學(xué)生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。 3. 重點,難點以及確定依據(jù): 本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點 重點: 通過 突出重點 難點: 通過 突破難點 關(guān)鍵: 下面,為了講清重難上點,使學(xué)生能達到本節(jié)課設(shè)定的目標,再從教法和學(xué)法上談?wù)劊?/p> 二、教學(xué)策略(說教法) 1. 教學(xué)手段: 如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標。在教學(xué)過程中擬計劃進行如下操作:教學(xué)方法。基于本節(jié)課的特點: 應(yīng)著重采用 的教學(xué)方法。 2. 教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。 3. 學(xué)情分析:(說學(xué)法) 我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。 。1) 學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué) 生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散 。2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。 。3) 動機和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力 最后我來具體談?wù)勥@一堂課的教學(xué)過程: 4. 教學(xué)程序及設(shè)想: 。1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。 。2)由實例得出本課新的知識點 (3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學(xué)生的思維能力。 。4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。 。5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標。 (6)變式延伸,進行重構(gòu),重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。 。7)板書 。8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高, 教學(xué)程序: 課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分 一、說教材 1、教材的地位、作用及編寫意圖 《對數(shù)函數(shù)》出此刻職業(yè)高中數(shù)學(xué)第一冊第四章第四節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等資料,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;"對數(shù)函數(shù)"這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的'相互關(guān)系,蘊含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考資料。 2、教學(xué)目標的確定及依據(jù)。 依據(jù)教學(xué)大綱和學(xué)生獲得知識、培養(yǎng)本事及思想教育等方面的要求:我制定了如下教育教學(xué)目標: 。1)知識目標:理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。 。2)本事目標:培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的本事。 。3)德育目標:培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。 。4)情感目標:在民主、和諧的教學(xué)氣氛中,促進師生的情感交流。 3、教學(xué)重點、難點及關(guān)鍵 重點:對數(shù)函數(shù)的概念、圖象和性質(zhì); 難點:利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì); 關(guān)鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。 二、說教法 大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解本事,運算本事,思維本事等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)進取性不高。針對這種情景,在教學(xué)中,我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對數(shù)函數(shù)圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地理解并提高學(xué)生的學(xué)習(xí)興趣和進取性,很好地突破難點和提高教學(xué)效率。 三、說學(xué)法 教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生進取思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo): 。1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。 。2)探究式學(xué)習(xí)法:學(xué)生經(jīng)過分析、探索、得出對數(shù)函數(shù)的定義。 。3)自主性學(xué)習(xí)法:經(jīng)過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。 。4)反饋練習(xí)法:檢驗知識的應(yīng)用情景,找出未掌握的資料及其差距。 這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種本事。 四、說教學(xué)程序 1、復(fù)習(xí)導(dǎo)入 。1)復(fù)習(xí)提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。 設(shè)計意圖:設(shè)計的提問既與本節(jié)資料有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知識清除了障礙,有意識地培養(yǎng)學(xué)生分析問題的本事。 。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么? 設(shè)計意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望明白問題的答案。 2、認定目標(出示教學(xué)目標) 3、導(dǎo)學(xué)達標 按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線"的原則,安排師生互動活動。 。1)對數(shù)函數(shù)的概念 引導(dǎo)學(xué)生從對數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a》0且a≠1)的反函數(shù)是y=logax,見課件。把函數(shù)y=logax叫做對數(shù)函數(shù),其中a》0且a≠1.從而引出對數(shù)函數(shù)的概念,展示課件。 設(shè)計意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學(xué)生易于理解。因為對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識,經(jīng)過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。 。2)對數(shù)函數(shù)的圖象 提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都能夠根據(jù)函數(shù)的解析式,列表、描點畫圖。再研究一下,我們還能夠用什么方法畫出對數(shù)函數(shù)的圖象呢? 讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。 教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。 方法一(描點法)首先列出x,y(y=log2x,y=logx)值的對應(yīng)表,因為對數(shù)函數(shù)的定義域為x》0,所以可取x=···,,,1,2,4,8···,請計算對應(yīng)的y值,然后在坐標系內(nèi)描點、畫出它們的圖象。 方法二(圖象變換法)因為對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),圖象關(guān)于直線y=x對稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對稱的曲線,就能夠得到y(tǒng)=logax.的圖象。學(xué)生動手做實驗,先描出y=2x的圖象,畫出它關(guān)于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=()x的圖象畫出y=logx的圖象,再出示課件,教師加以解釋。 設(shè)計意圖:用這種對稱變換的方法畫函數(shù)的圖象,能夠加深和鞏固學(xué)生對互為反函數(shù)的兩個函數(shù)之間的認識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點法畫函數(shù)圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學(xué)生自由選擇畫法。這樣能夠充分調(diào)動學(xué)生自主學(xué)習(xí)的進取性。 。3)對數(shù)函數(shù)的性質(zhì) 在理解對數(shù)函數(shù)定義的基礎(chǔ)上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點,關(guān)鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對數(shù)函數(shù)的性質(zhì),可先在同一坐標系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補充。作了以上分析之后,再分a》1與0《a《1兩種情景列出對數(shù)函數(shù)圖象和性質(zhì)表,()體現(xiàn)了從"特殊到一般"、"從具體到抽象"的方法。出示課件并進行詳細講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學(xué)生比較著記憶。 設(shè)計意圖:這種講法既嚴謹又直觀易懂,還能讓學(xué)生主動參與教學(xué)過程,對培養(yǎng)學(xué)生的創(chuàng)新本事有幫忙,學(xué)生易于理解易于掌握,并且利用表格,能夠突破難點。 由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件) 設(shè)計意圖:經(jīng)過比較對照的方法,學(xué)生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認識兩個函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對函數(shù)思想方法的認識和應(yīng)用意識。 4、鞏固達標(見課件) 這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識解決實際問題的本事,經(jīng)過這個環(huán)節(jié)學(xué)生能夠加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結(jié)。充分體現(xiàn)"數(shù)形結(jié)合"和"分類討論"的思想。 5、反饋練習(xí)(見課件) 習(xí)題是對學(xué)生所學(xué)知識的反饋過程,教師能夠了解學(xué)生對知識掌握的情景。 6、歸納總結(jié)(見課件) 引導(dǎo)學(xué)生對主要知識進行回顧,使學(xué)生對本節(jié)有一個整體的把握,所以,從三方面進行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。 7、課外作業(yè): 。1)完成P782、3題 。2)當?shù)讛?shù)a》1與0《a《1時,底數(shù)不一樣,對數(shù)函數(shù)圖象有什么持點? 五、說板書 板書設(shè)計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。 一、教材分析: 《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。 二、學(xué)情分析: 學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對數(shù)的運算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準確把握兩個加法法則的特點。 三、教學(xué)目的: 1、經(jīng)過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。 2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。 3、經(jīng)過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的本事。 四、教學(xué)重、難點 重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。 難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。 五、教學(xué)方法 本節(jié)采用以下教學(xué)方法: 1、類比:由數(shù)的加法運算類比向量的加法運算。 2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運用。 3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。 4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。 六、數(shù)學(xué)思想的體現(xiàn): 1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。 2、類比思想:使之與數(shù)的加法進行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。 3、歸納思想:主要體此刻以下三個環(huán)節(jié): 、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都能夠選用。 、谟晒簿向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。 、蹖ο蛄考臃ǖ慕Y(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。 七、教學(xué)過程: 1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。 2、引入新課: 。1)平行四邊形法則的引入。 學(xué)生在物理學(xué)中雖然接觸過位移的合成,可是并沒有構(gòu)成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一齊才能用平行四邊形法則,不在一齊不能用。這時要經(jīng)過講解例1,使學(xué)生認識到能夠經(jīng)過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。 設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學(xué)生認識到當表示向量的有向線段的起點不在一齊時,須把起點移到一齊,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。 所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。 這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。 設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。 。3)共線向量的加法 方向相同的兩個向量相加,對學(xué)生來說較易完成,"將它們接在一齊,取它們的方向及長度之和,作為和向量的方向與長度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。 方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:"異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。"類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。 反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則經(jīng)過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。 設(shè)計意圖:經(jīng)過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認識,使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。 。4)向量加法的運算律 ①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角 形法則得出,理解起來沒什么困難,再一次強化了學(xué)生對兩個法則特點及實質(zhì)的認識。 、诮Y(jié)合律:結(jié)合律是經(jīng)過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。 接下來是對應(yīng)的兩個練習(xí),運用交換律與結(jié)合律計算向量的和。 設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。 3、小結(jié) 先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認識,也給學(xué)生一個概括本節(jié)知識的機會,然后用課件展示小結(jié)資料,使學(xué)生印象更深。 。1)平行四邊形法則:起點相同,適用于不共線向量的求和。 (2)三角形法則首尾相接,適用于任意多個向量的求和。 。3)運算律 開始:各位專家領(lǐng)導(dǎo), 好! 今天我將要為大家講的課題是 首先,我對本節(jié)教材進行一些分析 一、教材結(jié)構(gòu)與內(nèi)容簡析 本節(jié)內(nèi)容在全書及章節(jié)的地位:《 》是高中數(shù)學(xué)新教材第 冊( )第 章第 節(jié)。在此之前,學(xué)生已學(xué)習(xí)了 ,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。 數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生: 二、 教學(xué)目標 根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標: 1 基礎(chǔ)知識目標: 2 能力訓(xùn)練目標: 3 創(chuàng)新素質(zhì)目標: 4 個性品質(zhì)目標: 三、 教學(xué)重點、難點、關(guān)鍵 本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點 重點: 通過 突出重點 難點: 通過 突破難點 關(guān)鍵: 下面,為了講清重點、難點,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p> 四、 教法 數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生 “知其然”而且要使學(xué)生“知其所以然”, 我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程;诒竟(jié)課的特點: ,應(yīng)著重采用 的教學(xué)方法。即: 五、 學(xué)法 我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。 1、理論: 2、實踐: 3、能力: 最后我來具體談一談這一堂課的教學(xué)過程: 六、 教學(xué)程序及設(shè)想 1、由 引入: 把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。 對于本題: 2、由實例得出本課新的知識點是: 3、講解例題。 我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學(xué)生的思維能力。在題中: 4、能力訓(xùn)練。 課后練習(xí) 使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。 5、總結(jié)結(jié)論,強化認識。 知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標。 6、變式延伸,進行重構(gòu)。 重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。 7、板書。 8、布置作業(yè)。 針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。 結(jié)束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學(xué)設(shè)想及其根據(jù)的新的教學(xué)研究形式。以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領(lǐng)導(dǎo)對本堂說課提出寶貴意見。 注意時間掌握 六、注意靈活導(dǎo)入新知識點。 電腦課件 使用投影 根據(jù)時間進行增刪 一、教材分析: 集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。 二、目標分析: 教學(xué)重點、難點 重點:集合的含義與表示方法。 難點:表示法的恰當選擇。 教學(xué)目標 l.知識與技能 。1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系; (2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性。互異性。無序性; 。4)會用集合語言表示有關(guān)數(shù)學(xué)對象; 2. 過程與方法 。1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。 。2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。 3. 情感、態(tài)度與價值觀 使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性。 三、教法分析 1. 教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標。 2. 教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。 四、過程分析 (一)創(chuàng)設(shè)情景,揭示課題 1、教師首先提出問題: 。1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。 。2)問題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征? 引導(dǎo)學(xué)生互相交流。 與此同時,教師對學(xué)生的活動給予評價。 2.活動: 。1)列舉生活中的集合的例子; (2)分析、概括各實例的共同特征 由此引出這節(jié)要學(xué)的內(nèi)容。 設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊 。ǘ┭刑叫轮,建構(gòu)概念 1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例: 。1)1-20以內(nèi)的所有質(zhì)數(shù); (2)我國古代的四大發(fā)明; 。3)所有的安理會常任理事國; 。4)所有的正方形; (5)海南省在20xx年9月之前建成的所有立交橋; 。6)到一個角的兩邊距離相等的所有的點; 。7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。 2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么? 3.每個小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。 一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。 4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。 設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神 (三)質(zhì)疑答辯,發(fā)展思維 1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性。互異性和無序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。 2.教師組織引導(dǎo)學(xué)生思考以下問題: 判斷以下元素的全體是否組成集合,并說明理由: 。1)大于3小于11的偶數(shù); (2)我國的小河流。 讓學(xué)生充分發(fā)表自己的建解。 3. 讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。 4.教師提出問題,讓學(xué)生思考 。1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。 如果是集合A的元素,就說屬于集合A,記作。 如果不是集合A的元素,就說不屬于集合A,記作。 。2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。 。3)讓學(xué)生完成教材第6頁練習(xí)第1題。 5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1.1A組第1題。 6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題: 。1)要表示一個集合共有幾種方式? 。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么? 。3)如何根據(jù)問題選擇適當?shù)募媳硎痉ǎ?/p> 使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。 設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。 。ㄋ模╈柟躺罨,反饋矯正 教師投影學(xué)習(xí): 。1)用自然語言描述集合{1,3,5,7,9}; 。2)用例舉法表示集合 。3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。 設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象(五)歸納小結(jié),布置作業(yè) 小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題: 1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容? 2.你認為學(xué)習(xí)集合有什么意義? 3.選擇集合的表示法時應(yīng)注意些什么? 設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。 作業(yè): 1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題。 2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。 一、教材分析 集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。 本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。 二、教學(xué)目標 1、學(xué)習(xí)目標 。1)通過實例,了解集合的含義,體會元素與集合之間的關(guān)系以及理解“屬 于”關(guān)系; 。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用; 2、能力目標 。1)能夠把一句話一個事件用集合的方式表示出來。 (2)準確理解集合與及集合內(nèi)的元素之間的關(guān)系。 3、情感目標 通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。 三、教學(xué)重點與難點 重點 集合的基本概念與表示方法; 難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合; 四、教學(xué)方法 。1)本課將采用探究式教學(xué),讓學(xué)生主動去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果; 。2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標。 五、學(xué)習(xí)方法 。1)主動學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認識的同時, 教師層層深入,啟發(fā)學(xué)生積極思維,主動探索知識,培養(yǎng)學(xué)生思維想象 的綜合能力。 。2)反饋補救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實現(xiàn)“培 優(yōu)扶差,滿足不同。” 六、教學(xué)思路 具體的思路如下 復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對數(shù)學(xué)更加感興趣,有助于上課的效率!因為時間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。 一、 引入課題 軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生? 在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。 二、 正體部分 學(xué)生閱讀教材,并思考下列問題: 。1)集合有那些概念? (2)集合有那些符號? 。3)集合中元素的特性是什么? 。4)如何給集合分類? (一)集合的有關(guān)概念 。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號, 都可以稱作對象. 。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由 這些對象的全體構(gòu)成的集合. 。3)元素:集合中每個對象叫做這個集合的元素. 集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、?? 1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子, 對學(xué)生的例子予以討論、點評,進而講解下面的問題。 2、元素與集合的關(guān)系 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A 要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例) 集合A={3,4,6,9}a=2 因此我們知道a?A 3、集合中元素的特性 。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了. 。2)互異性:集合中的元素一定是不同的. 。3)無序性:集合中的元素沒有固定的順序. 4、集合分類 根據(jù)集合所含元素個屬不同,可把集合分為如下幾類: 。1)把不含任何元素的集合叫做空集Ф 。2)含有有限個元素的集合叫做有限集 。3)含有無窮個元素的集合叫做無限集 注:應(yīng)區(qū)分?,{?},{0},0等符號的含義 5、常用數(shù)集及其表示方法 。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合.記作N 。2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集.記作N*或N+ 。3)整數(shù)集:全體整數(shù)的集合.記作Z (4)有理數(shù)集:全體有理數(shù)的集合.記作Q 。5)實數(shù)集:全體實數(shù)的集合.記作R 注:(1)自然數(shù)集包括數(shù)0. 。2)非負整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排 除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z* (二)集合的表示方法 我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。 (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?; 例1.(課本例1) 思考2,引入描述法 說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的'順序。 (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。 具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。 如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?; 例2.(課本例2) 說明:(課本P5最后一段) 思考3:(課本P6思考) 強調(diào):描述法表示集合應(yīng)注意集合的代表元素 {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。 辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。 說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。 (三)課堂練習(xí)(課本P6練習(xí)) 三、 歸納小結(jié)與作業(yè) 本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。 書面作業(yè):習(xí)題1.1,第1- 4題 教學(xué)目標: 。1)至少掌握點到直線的距離公式的一種推導(dǎo)方法,能用公式來求點到直線距離。 。2)培養(yǎng)學(xué)生探究能力和由特殊到一般的研究問題的能力。 。3)認識事物(知識)之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化的思想和綜合應(yīng)用知識分析問題解決問題的能力。 。4)培養(yǎng)學(xué)生團隊合作精神,培養(yǎng)學(xué)生個性品質(zhì),培養(yǎng)學(xué)生勇于探究的科學(xué)精神。 教學(xué)重點:點到直線的距離公式推導(dǎo)及公式的應(yīng)用 教學(xué)難點:點到直線的距離公式的推導(dǎo) 教學(xué)方法:啟發(fā)引導(dǎo)法、討論法 學(xué)習(xí)方法:任務(wù)驅(qū)動下的研究性學(xué)習(xí) 教學(xué)時間:45分鐘 教學(xué)過程: 1、教師提出問題,引發(fā)認知沖突(約5分鐘) 問題:假定在直角坐標系上,已知一個定點P(x0,y0)和一條定直線l:AxByC=0,那么如何求點P到直線l的距離d?請學(xué)生思考并回答。 學(xué)生1:先過點P作直線l的垂線,垂足為Q,則|PQ|就是點P到直線l的距離d;然后用點斜式寫出垂線方程,并與原直線方程聯(lián)立方程組,此方程組的解就是點Q的坐標;最后利用兩點間距離公式求出|PQ|。 接著,教師用投影出示下列5道題(嘗試性題組),請5位學(xué)生上黑板練習(xí)(第(4)題請一位運算能力強的同學(xué),其余學(xué)生在下面自己練習(xí),每做完一題立即講評): 。1)求P(1,2)到直線l:x=3的距離d;(答案:d=2) (2)求P(x0,y0)到直線l:ByC=0(B≠0)的距離d;(答案:) (3)求P(x0,y0)到直線l:AxC=0(A≠0)的距離d;(答案:) 。4)求P(6,7)到直線l:3x—4y5=0的距離d;(答案:d=1) (5)求P(x0,y0)到直線l:AxByC=0(AB≠0)的距離d。 第(1)容易、(2)和(3)題雖然含有字母參數(shù),但由于直線的位置比較特殊,學(xué)生不難得出正確結(jié)論;第(4)題雖然運算量較大,但按照剛才學(xué)生1回答的方法與步驟,也能順利解出正確答案;第(5)題雖然思路清晰,但由于字母參數(shù)過多、運算量太大行不通。學(xué)生們陷入了困境。 2、教師啟發(fā)引導(dǎo),學(xué)生走出困境(約8分鐘) 教師:根據(jù)以上5位學(xué)生的運算結(jié)果,你能得到什么啟示? 學(xué)生2:當直線的位置比較特殊(水平或豎直)時,點到直線的距離容易求得,而當直線是傾斜位置時則較難;含有多個字母時雖然想起來思路很自然,但具體操作起來因計算量很大而無法得出結(jié)果。 教師:那么,練習(xí)(5)有沒有運算量小一點的推導(dǎo)方法呢?我們能不能根據(jù)剛才的第(2)、(3)的啟示,借助水平、豎直情形和平面幾何知識來解決傾斜即一般情況呢?請同學(xué)們思考。 學(xué)生3:能!如圖1,過點P作x、y軸的垂線分別交直線l于S、R,則由三角形面積公式可得 |PQ|=(|PR|·|PS|)/|RS| 教師:|PR|怎么求?|PS|又怎么求? 學(xué)生3:設(shè)R(x1,y0),則由Ax1By0C=0, 得x1=—(By0C)/A, ∴|PR|=|x0—x1|=|Ax0By0C|/|A|; 同理:|PS|=|Ax0By0C|/|B|。 教師:|RS|怎么求? 學(xué)生3:|RS|==(/|AB|)·|Ax0By0C|。 教師:|PQ|結(jié)果是什么? 學(xué)生3:|PQ|=。 教師:公式的這種推導(dǎo)方法是否需要作補充說明? 學(xué)生4:當A=0或B=0時,ΔPRS不存在,故應(yīng)說明公式當A=0或B=0時是否適用? 由(2)、(3)檢驗可知公式依然成立,即公式對任意直線都適用。 3、教師提出問題,學(xué)生分組討論(約10分鐘) 教師:推導(dǎo)點到直線的距離公式的方法不少。前面我們學(xué)了函數(shù)、三角函數(shù)、向量、不等式等數(shù)學(xué)知識,你能用所學(xué)過的知識從不同角度、采用不同方法來推導(dǎo)這個公式嗎?請同學(xué)們先獨立思考,然后在小組上進行討論交流,由組長負責記錄。10分鐘后每組推選一名代表對本組找到的最好的一種推導(dǎo)方法通過實物投影進行"成果"交流。 學(xué)生們積極探討;教師來回巡視,回答各研究小組的詢問...... 4、學(xué)生交流"成果",教師點評小結(jié)(約16分鐘) 經(jīng)過約十分鐘的研討,各小組都找到了新的推導(dǎo)方法。于是教師請4名代表依次上講臺(讓準備成熟的先講),借助實物投影介紹本組的"成果"。由于時間關(guān)系,每組只要求講一種方法,用時不超過4分鐘,且各組的方法不能重復(fù)。 學(xué)生5:我們用的是"設(shè)而不求,整體代換"的數(shù)學(xué)思想。請看投影屏幕: 設(shè)Q的坐標為(x1,y1),則直線PQ的斜率k1=,又直線l的斜率k=—,于是由PQ⊥l得,k1k=—1即B(x1—x0)—A(y1—y0)=0① 又因為Ax1By1C=0,即Ax1By1=—C 兩邊同減Ax0By0得A(x1—x0)B(y1—y0)=—(Ax0By0C)② 于是①2②2得,(A2B2)[(x1—x0)2(y1—y0)2]=(Ax0By0C)2, 即(A2B2)d2=(Ax0By0C)2 所以d=。 教師:"設(shè)而不求,整體代換",真是奧妙無窮,這是解析幾何減少運算量的有效途徑,同時也體現(xiàn)了數(shù)學(xué)的內(nèi)在美,妙不可言。 學(xué)生6:我們小組向大家介紹一種獨特的方法——向量法,請看投影屏幕: 如圖2,設(shè)T(x1,y1)為直線l上的任意一點,則Ax1By1C=0,=(x1—x0,y1—y0) ∵PQ⊥直線l, ∴平行于直線l的法向量=(A,B) 另設(shè)與的夾角為θ,則·=cosθ 即|A(x1—x0)B(y1—y0)|=|||cosθ| 即|Ax0By0C|=·d ∴d=。 教師:向量是數(shù)量與圖形的有機結(jié)合,解析幾何是用代數(shù)的方法解決幾何問題,兩者都體現(xiàn)了數(shù)形結(jié)合的思想,第三小組的推導(dǎo)方法證明了這一點,也再次說明了向量具有很強的實用性與工具性,用向量法解解析幾何題確實行之有效。 學(xué)生7::我們小組向大家介紹向量的另一種方法,妙用向量數(shù)量積的性質(zhì).請看投影屏幕: 如圖3,設(shè)垂足是點H(m,n), 直線l的法向量共線, 這是相當簡單的方法了。 教師:巧妙利用向量數(shù)量積的性質(zhì)來求距離,簡直是"巧奪天工",與其他方法相比,這種方法有絕對優(yōu)勢,我們必須重視對向量工具性的研究和應(yīng)用。 學(xué)生8:剛才三個小組的證明方法確實精彩,我們也發(fā)現(xiàn)了一種巧妙的方法,把它稱為"柯西不等式法",請看投影屏幕: 我們知道,P點到直線l的距離,實質(zhì)上是點P與直線l上任意一點T的距離的最小值,于是我們設(shè)T(x1,y1)為直線l上的任一點(如圖2),則Ax1By1C=0, 而d=|PT|min,于是|PT|= =×, 利用柯西不等式,便有|PT|≥=, 所以d=,此時,即PT垂直于直線l。 教師:這一證法果然十分巧妙,包含的數(shù)學(xué)思想十分豐富。由點到直線的距想到最小值,又由最小值想到不等式,在一步步"轉(zhuǎn)化"中問題得到圓滿解決。同時也體現(xiàn)了不等式的工具作用。 5、公式應(yīng)用(學(xué)生練習(xí),約3分鐘) 。1)求P(6,7)到直線l:3x—4y5=0的距離d。 。ㄖ苯哟降么鸢福篸=1,檢驗嘗試性題組第(4)的答案) 。2)求P(—1,1)到直線l:的距離d。 。ㄏ然本方程為一般式再代公式得答案:) 6、教師小結(jié)并布置作業(yè)(約1分鐘) 這節(jié)課我們學(xué)習(xí)了點到直線的距離公式,在公式的推導(dǎo)中學(xué)到了許多重要的數(shù)學(xué)思想和方法,感受到了數(shù)學(xué)的奧妙,也感受到了成功的喜悅。其實這個公式的推導(dǎo)方法不下十種,由于課堂上時間緊,許多同學(xué)有創(chuàng)造性的推導(dǎo)方法不能進行展示、交流,請同學(xué)們撰寫一篇題為《點到直線距離公式的多種推導(dǎo)方法》的數(shù)學(xué)小論文,作為本節(jié)課的作業(yè),允許三到四人合作完成。 設(shè)計說明: 數(shù)學(xué)公式的教學(xué)應(yīng)包含兩個部分:公式的推導(dǎo)和公式的運用。由于受應(yīng)試教育的影響,前者往往被"輕描淡寫",而后者卻搞得"轟轟烈烈",這顯然與"重結(jié)論,但更重過程"的現(xiàn)代教育理念相違背。其實數(shù)學(xué)公式的推導(dǎo)都蘊含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,誰忽視了這個"產(chǎn)生過程",誰就忽視了數(shù)學(xué)的"精髓",誰就忽視了學(xué)生探究性思維品質(zhì)的培養(yǎng)。 這節(jié)課把研究性學(xué)習(xí)引入公式的教學(xué),讓學(xué)生真正成為課堂的主人。在推導(dǎo)公式的過程中,學(xué)生通過克服困難的經(jīng)歷,以及獲得成功的體驗,鍛煉了意志,增強了信心。其實所有公式的教學(xué)、定理的教學(xué)都應(yīng)向這個方向努力。 數(shù)學(xué)教學(xué),從根本上講就是提高學(xué)生的數(shù)學(xué)素質(zhì),提高學(xué)生的數(shù)學(xué)素質(zhì)的有效途徑有二:其一,使學(xué)生善于總結(jié),使零亂的知識系統(tǒng)化、綜合化;其二,使學(xué)生善于聯(lián)想,培養(yǎng)發(fā)散性思維。本節(jié)課使學(xué)會從不同的角度思考問題,加強知識間的聯(lián)系,正是鍛練、提高學(xué)生運用知識分析問題和解決問題的能力,從而提高數(shù)學(xué)素質(zhì)。 通過公式求點到直線的距離并不困難,但這個公式的推導(dǎo)方法不下十種,且各種推導(dǎo)都蘊含著重要的數(shù)學(xué)思想、方法,由于課堂上時間緊,許多同學(xué)的有創(chuàng)造性的推導(dǎo)方法不能進行展示、交流,故課外請同學(xué)們撰寫一篇題為《點到直線距離公式的多種推導(dǎo)方法》的數(shù)學(xué)小論文作為本節(jié)課的作業(yè)?紤]到同學(xué)的個體差異,故允許三到四人合作完成。同時通過學(xué)生小論文的完成情況對這節(jié)課的教學(xué)效果作出評價。 本課設(shè)計有一定的彈性,實際教學(xué)中,學(xué)生想到的推導(dǎo)方法不一定是上述幾種,我將針對每一種方法的特點進行適當?shù)狞c評。進行交流的學(xué)生不一定是四人,若時間不夠,公式應(yīng)用留到下節(jié)課,本節(jié)課只完成公式推導(dǎo)。 尊敬的各位專家、評委: 下午好! 我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。 一、教材分析 。ㄒ唬┑匚慌c作用 數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。 。ǘ⿲W(xué)情分析 。1)學(xué)生已熟練掌握_________________。 。2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。 。3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。 (4) 學(xué)生層次參次不齊,個體差異比較明顯。 二、目標分析 新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標指出教學(xué)的主體是學(xué)生,因此目標的制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標: 。ㄒ唬┙虒W(xué)目標 。1)知識與技能 使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。 。2)過程與方法 引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。 。3)情感態(tài)度與價值觀 在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。 。ǘ┲攸c難點 本節(jié)課的教學(xué)重點是________________________,教學(xué)難點是_____________________。 三、教法、學(xué)法分析 (一)教法 基于本節(jié)課的內(nèi)容特點和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實現(xiàn)本節(jié)課的教學(xué)目標,在教法上我采取了: 1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性. 2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念. 3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴謹?shù)耐评,并順利地完成書面表達. (二)學(xué)法 在學(xué)法上我重視了: 1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍。 2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。 四、教學(xué)過程分析 。ㄒ唬┙虒W(xué)過程設(shè)計 教學(xué)是一個教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵、評價等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學(xué)。 (1)創(chuàng)設(shè)情境,提出問題。 新課標指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。 (2)引導(dǎo)探究,建構(gòu)概念。 數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過程. 。3)自我嘗試,初步應(yīng)用。 有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究. (4)當堂訓(xùn)練,鞏固深化。 通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。 。5)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。我設(shè)計了三個問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?(2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能? 。ǘ┳鳂I(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本 節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 我設(shè)計了以下作業(yè): (1)必做題 。2)選做題 。ㄈ┌鍟O(shè)計 板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。 五、評價分析 學(xué)生學(xué)習(xí)的結(jié)果評價當然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對____是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。 謝謝! 各位老師: 大家好! 我叫***,來自**。我說課的題目是《簡單隨機抽樣》,內(nèi)容選自于新課程人教A版必修3第二章第一節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、和教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計: 一、教材分析 1.教材所處的地位和作用 "簡單隨機抽樣"是"隨機抽樣"的基礎(chǔ),"隨機抽樣"又是"統(tǒng)計學(xué)"的基礎(chǔ),因此,在"統(tǒng)計學(xué)"中,"簡單隨機抽樣"是基礎(chǔ)的基礎(chǔ)。在初中學(xué)生已學(xué)過相關(guān)概念,如"抽樣""總體"、"個體"、"樣本"、"樣本容量"等,具有一定基礎(chǔ),新教材把"統(tǒng)計"這部分內(nèi)容編入必修部分,突出了統(tǒng)計在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位,但同時也給學(xué)生學(xué)習(xí)增加了難度。 2教學(xué)的重點和難點 重點:掌握簡單隨機抽樣常見的兩種方法(抽簽法、隨機數(shù)表法) 難點:理解簡單隨機抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性 二、教學(xué)目標分析 1.知識與技能目標: 正確理解隨機抽樣的概念,掌握抽簽法、隨機數(shù)表法的一般步驟; 2.過程與方法目標: 。1)能夠從現(xiàn)實生活或其他學(xué)科中提出具有一定價值的統(tǒng)計問題; 。2)在解決統(tǒng)計問題的過程中,學(xué)會用簡單隨機抽樣的方法從總體中抽取樣本。 3.情感,態(tài)度和價值觀目標 通過對現(xiàn)實生活和其他學(xué)科中統(tǒng)計問題的提出,體會數(shù)學(xué)知識與現(xiàn)實世界及各學(xué)科知識之間的聯(lián)系,認識數(shù)學(xué)的重要性 三、教學(xué)方法與手段分析 為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué),并對學(xué)生滲透"從特殊到一般"的學(xué)習(xí)方法,由于本節(jié)課內(nèi)容實例多,信息容量大,文字多,我采用多媒體輔助教學(xué),節(jié)省時間,提高教學(xué)效率,另外采用這種形式也可強化學(xué)生感觀刺激,也能大大提高學(xué)生的學(xué)習(xí)興趣。 四、教學(xué)過程分析 。ㄒ唬┰O(shè)置情境,提出問題 例1:請問下列調(diào)查是"普查"還是"抽樣"調(diào)查? A、一鍋水餃的味道B、旅客上飛機前的安全檢查 c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況 E、美國總統(tǒng)的民意支持率 學(xué)生討論后,教師指出生活中處處有"抽樣" 「設(shè)計意圖」生活中處處有"抽樣"調(diào)查,明確學(xué)習(xí)"抽樣"的必要性。 。ǘ┲鲃犹骄浚瑯(gòu)建新知 例2:語文老師為了了解某班同學(xué)對某首詩的背誦情況,應(yīng)采用下列哪種抽查方式?為什么? A、在班級12名班委名單中逐個抽查5位同學(xué)進行背誦 B、在班級45名同學(xué)中逐一抽查10位同學(xué)進行背誦 先讓學(xué)生分析、選擇B后,師生一起歸納其特征: 。1)不放回逐一抽樣, 。2)抽樣有代表性(個體被抽到可能性相等),學(xué)生體驗B種抽樣的科學(xué)性后,教師指出這是簡單隨機抽樣,并復(fù)習(xí)初中講過的有關(guān)概念,最后教師補充板書課題--(簡單隨機)抽樣及其定義。 「設(shè)計意圖」例2從正面分析簡單隨機抽樣的科學(xué)性、公平性,突出"等可能性"特征。這是突破教學(xué)難點的重要環(huán)節(jié)之一。 例3我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會,要使每名學(xué)生的機會均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p> 先讓學(xué)生獨立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納"抽簽法"步驟: (1)編號制簽 。2)攪拌均勻 。3)逐個不放回抽取n次。教師板書上面步驟。 「設(shè)計意圖」在自主探究,合作交流中構(gòu)建新知,體驗"抽簽法"的公平性,從而突破難點,突出重點。 請一位同學(xué)說說例2采用"抽簽法"的實施步驟。 「設(shè)計意圖」 1、反饋練習(xí),落實知識點,突出重點。 2、體會"抽簽法"具有"簡單、易行"的優(yōu)點。 〈屏幕出示〉 例4、假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現(xiàn)從800袋牛奶中抽取60袋進行檢驗 提問:這道題適合用抽簽法嗎? 讓學(xué)生進行思考,分析抽簽法的局限性,從而引入隨機數(shù)表法。教師出示一份隨機數(shù)表,并介紹隨機數(shù)表,強調(diào)數(shù)表上的數(shù)字都是隨機的,各個數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機數(shù)表法的步驟,最后師生一起歸納步驟: 。1)編號 。2)在隨機數(shù)表上確定起始位置 。3)取數(shù)。教師板書上面步驟。 請一位同學(xué)說說例2采用"隨機數(shù)表法"的實施步驟。 「設(shè)計意圖」 1、體會隨機數(shù)表法的科學(xué)性 2、體會隨機數(shù)表法的優(yōu)越性:避免制簽、攪拌。 3、反饋練習(xí),落實知識點,突出重點。 、缯n堂小結(jié): 1.簡單隨機抽樣及其兩種方法 2.兩種方法的操作步驟 。ú捎脝柎鹦问剑 「設(shè)計意圖」通過小結(jié)使學(xué)生們對知識有一個系統(tǒng)的認識,突出重點,抓住關(guān)鍵,培養(yǎng)概括能力。 ㈣布置作業(yè) 課本練習(xí)2、3 [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。 說教學(xué)目標 A、知識目標: 掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。 B、能力目標: 。1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。 (2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。 (3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。 C、情感目標:(數(shù)學(xué)文化價值) 。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。 (2)通過公式的運用,樹立學(xué)生"大眾教學(xué)"的思想意識。 (3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數(shù)學(xué)的心理體驗,產(chǎn)生熱愛數(shù)學(xué)的情感。 說教學(xué)重點: 等差數(shù)列前n項和的公式。 說教學(xué)難點: 等差數(shù)列前n項和的公式的靈活運用。 說教學(xué)方法: 啟發(fā)、討論、引導(dǎo)式。 教具: 現(xiàn)代教育多媒體技術(shù)。 教學(xué)過程 一、創(chuàng)設(shè)情景,導(dǎo)入新課。 師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項公式及其有關(guān)性質(zhì),今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時,一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。 例1,計算:1+2+3+4+5+6+7+8+9+10。 這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。 生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。 生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。 上面兩式相加得2S=11+10+。。。。。。+11=10×11=110 10個 所以我們得到S=55, 即1+2+3+4+5+6+7+8+9+10=55 師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。 理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢? 生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。 二、教授新課(嘗試推導(dǎo)) 師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。 生4:Sn=a1+a2+。。。。。。an—1+an也可寫成 Sn=an+an—1+。。。。。。a2+a1 兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1) n個 =n(a1+an) 所以Sn=(I) 師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n—1)d代入公式(1)得 Sn=na1+ d(II) 上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。 三、公式的應(yīng)用(通過實例演練,形成技能)。 1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算: 。1)1+2+3+。。。。。。+n 。2)1+3+5+。。。。。。+(2n—1) (3)2+4+6+。。。。。。+2n 。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n 請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。 生5:直接利用等差數(shù)列求和公式(I),得 (1)1+2+3+。。。。。。+n= 。2)1+3+5+。。。。。。+(2n—1)= 。3)2+4+6+。。。。。。+2n==n(n+1) 師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。 生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以 原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n) =n2—n(n+1)=—n 生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結(jié)合都為—1,故可得另一解法: 原式=—1—1—。。。。。!1=—n n個 師:很好!在解題時我們應(yīng)仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。 例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。 生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4 又∵d=—2,∴a1=6 ∴S12=12 a1+66×(—2)=—60 生9:(2)由a1+a2+a3=12,a1+d=4 a8+a9+a10=75,a1+8d=25 解得a1=1,d=3 ∴S10=10a1+=145 師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。 師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編) ①數(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n 、谌舸祟}不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導(dǎo)學(xué)生運用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。 2、用整體觀點認識Sn公式。 例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解) 師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么? 生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。 師:對!(簡單小結(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學(xué)問題的體現(xiàn)。 師:由于時間關(guān)系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導(dǎo)學(xué)生觀察當d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識Sn公式后,這留給同學(xué)們課外繼續(xù)思考。 最后請大家課外思考Sn公式(1)的逆命題: 已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。 四、小結(jié)與作業(yè)。 師:接下來請同學(xué)們一起來小結(jié)本節(jié)課所講的內(nèi)容。 生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項和公式。 2、用所推導(dǎo)的兩個公式解決有關(guān)例題,熟悉對Sn公式的運用。 生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。 2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。 3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。 師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時希望大家在學(xué)習(xí)中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學(xué)習(xí)。 本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。 數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。 作業(yè):P49:13、14、15、17 【高中數(shù)學(xué)經(jīng)典說課稿】相關(guān)文章: 高中數(shù)學(xué)的說課稿11-04 高中數(shù)學(xué)經(jīng)典說課稿11-25 高中數(shù)學(xué)經(jīng)典說課稿范文06-24 高中數(shù)學(xué)向量說課稿09-09 高中數(shù)學(xué)函數(shù)的說課稿11-17 高中數(shù)學(xué)集合說課稿11-12 高中數(shù)學(xué)面試說課稿11-18 高中數(shù)學(xué)全套說課稿12-05高中數(shù)學(xué)經(jīng)典說課稿6
高中數(shù)學(xué)經(jīng)典說課稿7
高中數(shù)學(xué)經(jīng)典說課稿8
高中數(shù)學(xué)經(jīng)典說課稿9
高中數(shù)學(xué)經(jīng)典說課稿10
高中數(shù)學(xué)經(jīng)典說課稿11
高中數(shù)學(xué)經(jīng)典說課稿12
高中數(shù)學(xué)經(jīng)典說課稿13
高中數(shù)學(xué)經(jīng)典說課稿14
高中數(shù)學(xué)經(jīng)典說課稿15