久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學(xué)《分類計數(shù)原理與分步計數(shù)原理》說課稿

時間:2024-01-12 07:17:48 高中說課稿 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)《分類計數(shù)原理與分步計數(shù)原理》說課稿

  作為一無名無私奉獻(xiàn)的教育工作者,總不可避免地需要編寫說課稿,借助說課稿可以更好地組織教學(xué)活動。說課稿應(yīng)該怎么寫呢?以下是小編為大家收集的高中數(shù)學(xué)《分類計數(shù)原理與分步計數(shù)原理》說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)《分類計數(shù)原理與分步計數(shù)原理》說課稿

高中數(shù)學(xué)《分類計數(shù)原理與分步計數(shù)原理》說課稿1

  一、說教材

  1、教材的地位與作用《分類計數(shù)原理與分步計數(shù)原理》,是高中數(shù)學(xué)第十章排列、組合的第一節(jié)課。分類計數(shù)原理和分步計數(shù)原理是排列、組合的基礎(chǔ),學(xué)生對這兩個原理的理解,掌握和運(yùn)用,成為學(xué)好本章的一個關(guān)鍵。

  2、教學(xué)目標(biāo)

 。1)知識目標(biāo)掌握計數(shù)的兩個基本原理,并能正確的用它們分析和解決一些簡單的問題。

  (2)能力目標(biāo)通過計數(shù)基本原理的理解和運(yùn)用,提高學(xué)生分析問題和解決問題的能力,開發(fā)學(xué)生的邏輯思維能力。

 。3)情感目標(biāo)培養(yǎng)學(xué)生勇于探索、勇于創(chuàng)新的精神,面對現(xiàn)實(shí)生活中復(fù)雜的事物和現(xiàn)象,能夠作出正確的分析,準(zhǔn)確的判斷,進(jìn)而拿出完善的處理方案,提高實(shí)際的應(yīng)變能力。

  3、重點(diǎn)、難點(diǎn)重點(diǎn)是分類計數(shù)原理與分步計數(shù)原理難點(diǎn)是正確運(yùn)用分類計數(shù)原理與分步計數(shù)原理

  二、說教法啟發(fā)引導(dǎo)式

  三、說學(xué)法指導(dǎo)學(xué)生運(yùn)用觀察分析討論總結(jié)的學(xué)習(xí)方法。

  四、教具、學(xué)具多媒體

  五、教學(xué)程序

  1、提出課題——引入新課

  首先,提出本節(jié)課的課題分類計數(shù)原理與分步計數(shù)原理設(shè)計意圖:明確任務(wù),激發(fā)興趣。

  2、觀察歸納——形成概念:

  首先,我結(jié)合圖給出問題1:

  問題1:從北京到上海,可以乘火車,也可以乘汽車。一天中有火車3班,汽車有2班。那么一天中,乘坐這些交通工具從北京到上海共有多少種不同的走法?(答案:3+2=5)由這個問題我們得到分類計數(shù)原理:完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法‥‥‥,在第n類辦法中有mn種不同的方法,那么完成這件事共有:N=m1+m2++mn種不同的方法接下來,我再結(jié)合圖給出問題2:

  問題2:從北京到上海,要從北京先乘火車到鄭州,再于第二天從鄭州乘汽車到上海。一天中從北京到鄭州的火車有3班,從鄭州到上海的汽車有2班。那么兩天中,從北京到上海共有多少種不同的走法?(答案:3x2=6)。

  由這個問題我們得到分步計數(shù)原理:完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法‥‥‥,做第n步有mn種不同的方法,那么完成這件事共有N=m1×m2××mn種不同的方法。

  設(shè)計意圖:由兩個實(shí)際問題,引導(dǎo)學(xué)生得到分類計數(shù)原理與分步計數(shù)原理,培養(yǎng)學(xué)生的觀察、歸納能力。

  3、比較歸納深化概念兩個原理的比較:

  1)共同點(diǎn):都是計數(shù)原理,即統(tǒng)計完成某件事不同方法種數(shù)的原理,因此都要先弄清是怎樣一件事,如何才算完成這件事。

  2)不同點(diǎn):分類計數(shù)原理中的n類辦法相互獨(dú)立,且每類里的每種方法都可獨(dú)立完成該事件;分步計數(shù)原理中的n個步驟缺一不可,每一步都不能獨(dú)立完成該件事,只有這n個步驟都完成之后,這件事才算完成。

  設(shè)計意圖:通過兩個原理的比較,讓更好的掌握原理的使用。

  4、學(xué)以致用——培養(yǎng)能力

  例1、書架的第一層放有4本不同的計算機(jī)書,第二層放有3本不同的文藝書,第3層放有2本不同的體育書。

 。1)從書架上任取1本書,有多少種不同的取法?

 。2)從書架的第1、2、3層各取1本書,有多少種不同的取法?(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。

  例2、一種號碼鎖有4個撥號盤,每個撥號盤上有從0到9共10個數(shù)字,這4個撥號盤可以組成多少個四位數(shù)字的號碼?

  例3、如圖是廣場中心的一個大花壇,國慶期間要在A、B、C、D四個區(qū)域擺放鮮花,有4種不同顏色的鮮花可供選擇,規(guī)定每個區(qū)域只準(zhǔn)擺放一種顏色的鮮花,相鄰區(qū)域鮮花顏色不同,問共有多少種不同的擺花方案?

  設(shè)計意圖:為了使學(xué)生達(dá)到對知識的深化理解,從而達(dá)到鞏固提高的效果。

  5、任務(wù)后延——自主探究

  (1)填空:

 、僖患ぷ骺梢杂2種方法完成,有5人會第一種方法完成,另有4人會用第2種方法完成,從中選出1人來完成這件工作,不同的`選法的種數(shù)是9。

  ②從A村去B村的道路有3條,從B村去C村的道路有2條,從A村經(jīng)B村去C村,不同走法的種數(shù)是6。

 。2)現(xiàn)有高中一年級的學(xué)生3名,高中二年級的學(xué)生5名,高中三年級的學(xué)生4名。

 、購闹羞x1人參加接待外賓的活動,有多少種不同的選法?12

 、趶3個年級各選1人參加接待外賓的活動,有多少種不同的選法?60

 。3)把(a1+a2+a3)(b1+b2+b3+b4+b5)(c1+c2+c3+c4)展開后不合并時共有多少項(xiàng)?60

  設(shè)計意圖:培養(yǎng)學(xué)生靈活運(yùn)用所學(xué)知識解決實(shí)際問題的能力。

  6、總結(jié)反思——提高認(rèn)識本節(jié)課學(xué)習(xí)了以下內(nèi)容(1)分類計數(shù)原理(2)分步計數(shù)原理(3)兩個原理的比較(4)用兩個原理解題的步驟

  設(shè)計意圖:突出重點(diǎn),幫助學(xué)生對所學(xué)知識系統(tǒng)化、條理化

  7、布置作業(yè)——知識拓展P97習(xí)題10。11,2,3題設(shè)計意圖:鞏固所學(xué)知識,發(fā)現(xiàn)和彌補(bǔ)教學(xué)中的遺漏和不足,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。

  六、板書設(shè)計(略)

高中數(shù)學(xué)《分類計數(shù)原理與分步計數(shù)原理》說課稿2

  一、本節(jié)內(nèi)容的地位與重要性

  “分類計數(shù)原理與分步計數(shù)原理”是《高中數(shù)學(xué)》一節(jié)獨(dú)特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。

  二、關(guān)于教學(xué)目標(biāo)的確定

  根據(jù)兩個基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:

  (1)使學(xué)生正確理解兩個基本原理的概念;

  (2)使學(xué)生能夠正確運(yùn)用兩個基本原理分析、解決一些簡單問題;

  (3)提高分析、解決問題的能力

  (4)使學(xué)生樹立“由個別到一般,由一般到個別”的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。

  三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理

  中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以兩個計數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實(shí)際問題是學(xué)習(xí)本章的重點(diǎn)內(nèi)容。

  正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件.而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯誤的認(rèn)識,所以分類計數(shù)原理和分步計數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對如何運(yùn)用這兩個基本原理有正確清楚的認(rèn)識。教學(xué)中兩個基本問題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。

  四、關(guān)于教學(xué)方法和教學(xué)手段的選用

  根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

  啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過主動思考、動手操作來達(dá)到對知識的“發(fā)現(xiàn)”和接受,進(jìn)而完成知識的內(nèi)化,使書本的知識成為自己的知識。

  電腦多媒體以聲音、動畫、影像等多種形式強(qiáng)化對學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。

  五、關(guān)于學(xué)法的指導(dǎo)

  “授人以魚,不如授人以漁”,在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點(diǎn)撥,類比推理,在積極的雙邊活動中,學(xué)生找到了解決疑難的方法。整個過程貫穿“設(shè)疑”——“思索”——“發(fā)現(xiàn)”——“解惑”四個環(huán)節(jié),學(xué)生隨時對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。

  六、關(guān)于教學(xué)程序的設(shè)計

  (一)課題導(dǎo)入

  這是本章的第一節(jié)課,是起始課,講起始課時,把這一學(xué)科的內(nèi)容作一個大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計數(shù)方法是本章內(nèi)容的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理)

  這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。

  (二)新課講授

  通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨(dú)立地把從甲地到乙地這件事辦好。

  緊跟著給出:

  引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?

  引伸2:若完成一件事,有類辦法.在第1類辦法中有種不同方法,在第2類辦法中有種不同的方法,……,在第類辦法中有種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

  這個問題的兩個引申由漸入深、循序漸進(jìn)為學(xué)生接受分類計數(shù)原理做好了準(zhǔn)備。

  板書分類計數(shù)原理內(nèi)容:

  完成一件事,有類辦法.在第1類辦法中有種不同方法,在第2類辦法中有種不同的方法,……,在第類辦法中有種不同方法,那么完成這件事共有種不同的方法.(也稱加法原理)

  此時,趁學(xué)生對于原理有了一個較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)

  (1)各分類之間相互獨(dú)立,都能完成這件事;

  (2)根據(jù)問題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;

  (3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

  這樣做加深學(xué)生對分類計數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。

  接下來給出問題2:(出示幻燈片)

  由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?

  提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

  問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。

  歸納得出:分步計數(shù)原理(板書原理內(nèi)容)

  分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有

  N=m1×m2×…×mn

  種不同的方法.

  同樣趁學(xué)生對定理有一定的認(rèn)識,引導(dǎo)學(xué)生分析分步計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)

  (1)各步驟相互依存,只有各個步驟完成了,這件事才算完成;

  (2)根據(jù)問題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;

  (3)分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。

  (三)應(yīng)用舉例

  教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。

  例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個問題:

  (1)每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字)

  (2)023是一個三位數(shù)嗎?(百位上不能是0)

  (3)組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的'數(shù)字;第三步確定個位上的數(shù)字)

  (4)怎樣表述?

  教師巡視指導(dǎo)、并歸納

  解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法.根據(jù)分步計數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.

  答:可以組成100個三位整數(shù).

  (教師的連續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問題能力有所提高.

  教師在第二個例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對兩個基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個基本原理解排列、組合綜合題打下基礎(chǔ))

  (四)歸納小結(jié)

  師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢?

  生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理.

  師:應(yīng)用兩個基本原理時需要注意什么呢?

  生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨(dú)立的

  (五)課堂練習(xí)

  P222:練習(xí)1~4.學(xué)生板演第4題

  (對于題4,教師有必要對三個多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)

  (六)布置作業(yè)

  P222:練習(xí)5,6,7.

  補(bǔ)充題:

  1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?

  (提示:按十位上數(shù)字的大小可以分為9類,共有987…21=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))

  2.某學(xué)生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù).

  (提示:需要按三個志愿分成三步.共有m(m-1)(m-2)種填寫方式)

  3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?

  (提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×99×99×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))

  4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

  (提示:由于85=13>10,所以10人中必有3人既會英語又會日語.(1)N=523;(2)N=5×25×32×3)

【高中數(shù)學(xué)《分類計數(shù)原理與分步計數(shù)原理》說課稿】相關(guān)文章:

音響功放原理及分類解析09-21

政治說課稿《量變與質(zhì)變原理》范文09-21

彼得原理陷阱04-19

獨(dú)特的民法原理06-02

統(tǒng)計數(shù)據(jù)的收集總結(jié)09-06

警惕彼得原理陷阱07-31

個性測試的原理與應(yīng)用07-24

關(guān)于項(xiàng)目策劃的原理08-14

網(wǎng)頁色彩搭配原理09-21